Skip to main content

Silicon Mobilization in Soils: the Broader Impact of Land Use


Dissolved Si (DSi) provision from land systems triggers diatom growth and CO2 sequestration. Soils and ecosystems act as a Si “filter”, transforming DSi originated from mineral weathering into biogenic Si (BSi) after DSi uptake by plants, or into other pedogenic forms of Si (non-BSi). Land use changes the quantity of BSi and non-BSi pools along the soil profile. However, methods used to isolate Si pools include chemical extractions at high temperatures and alkaline environments and therefore are unable to provide information concerning the dissolution potential of BSi and non-BSi pools under normal conditions of temperature and pH. Here, we conducted a batch experiment where forest, pasture and cropland soil samples were mixed with water at 25 °C and pH 7. The soil samples were collected from a temperate land use gradient located in the Belgian Loess Belt. We measured dissolved Si and aluminium (Al) during 80 days. BSi and non-BSi pool contents along the soil profile were known, as they had been established previously through chemical extraction. Results show that BSi and non-BSi enriched samples present distinct Si and Al dissolution curves. While non-BSi pools contribute significantly with immediate availability of Si, BSi pools present an initial slow dissolution. Therefore, croplands that were depleted of phytoliths and had poorly organic horizons display higher concentrations of initial dissolved Si, while pastures and forests, where pedogenic pools dominate only at depths below 40 cm, have more limited initial Si release.

This is a preview of subscription content, access via your institution.


  1. 1.

    Conley DJ, Carey JC (2015) Silica cycling over geologic time. Nat Publ Group 8:431–432

    CAS  Google Scholar 

  2. 2.

    Berner AR, Lasaga AC, Garrels RM (1983) The carbonate silicate geochemical cycle and its effect on atmosphere carbon dioxide over the past 100 million years. Am J Sci 283:641–683

    CAS  Article  Google Scholar 

  3. 3.

    Beaulieu E, Goddéris Y, Donnadieu Y, Labat D, Roelandt C (2012) High sensitivity of the continental-weathering carbon dioxide sink to future climate change. Nat Clim Chang 2:346–349

    CAS  Article  Google Scholar 

  4. 4.

    Tréguer PJ, De La Rocha CL (2013) The world ocean silica cycle. Annu Rev Mar Sci 5:477–501.

    Article  Google Scholar 

  5. 5.

    Conley DJ (1997) Riverine contribution of biogenic silica to the oceanic silica budget. Limnol Oceanogr 42:774–777

    CAS  Article  Google Scholar 

  6. 6.

    Smis A, Damme S, Struyf E et al (2010) A trade-off between dissolved and amorphous silica transport during peak flow events (Scheldt river basin, Belgium): impacts of precipitation intensity on terrestrial Si dynamics in strongly cultivated catchments. Biogeochemistry 106:475–487

    Article  Google Scholar 

  7. 7.

    Conley DJ (2002) Terrestrial ecosystems and the global biogeochemical silica cycle. Glob Biogeochem Cycles 16:1121

    Article  Google Scholar 

  8. 8.

    Carey JC, Fulweiler RW (2012) The terrestrial silica pump. PLoS One 7:e52932.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Struyf E, Conley DJ (2012) Emerging understanding of the ecosystem silica filter. Biogeochemistry 107:9–18

    CAS  Article  Google Scholar 

  10. 10.

    Alexandre A, Meunier J-D, Colin F, Koud J-M (1997) Plant impact on the biogeochemical cycle of silicon and related weathering processes. Geochim Cosmochim Acta 61:677–682

    CAS  Article  Google Scholar 

  11. 11.

    Piperno D (2006) Phytoliths: a comprehensive guide for archaeologists and Paleoecologists, Altamira Press, Oxford

  12. 12.

    Guntzer F, Keller C, Meunier J-D (2011) Benefits of plant silicon for crops: a review. Agron Sustain Dev 32:201–213

    Article  Google Scholar 

  13. 13.

    Bartoli F, Wilding LP (1980) Dissolution of biogenic opal as a function of its physical and chemical properties. Soil Sci Soc Am J 44:873–878

    CAS  Article  Google Scholar 

  14. 14.

    Fraysse F, Pokrovsky OS, Meunier J-D (2010) Experimental study of terrestrial plant litter interaction with aqueous solutions. Geochim Cosmochim Acta 74:70–84

    CAS  Article  Google Scholar 

  15. 15.

    Cornelis J-T, Weis D, Lavkulich L et al (2014) Silicon isotopes record dissolution and re-precipitation of pedogenic clay minerals in a podzolic soil chronosequence. Geoderma 235–236:19–29

    Article  Google Scholar 

  16. 16.

    Cornelis JT, Dumon M, Tolossa AR, Delvaux B, Deckers J, van Ranst E (2014) The effect of pedological conditions on the sources and sinks of silicon in the Vertic Planosols in South-Western Ethiopia. Catena 112:131–138

    CAS  Article  Google Scholar 

  17. 17.

    Sommer M, Kaczorek D, Kuzyakov Y, Breuer J (2006) Silicon pools and fluxes in soils and landscapes—a review. J Plant Nutr Soil Sci 169:310–329

    CAS  Article  Google Scholar 

  18. 18.

    Ronchi B, Clymans W, Barão ALP, Vandevenne F, Struyf E, Batelaan O, Dassargues A, Govers G (2013) Transport of dissolved Si from soil to river: a conceptual mechanistic model. Silicon 5:115–133

    CAS  Article  Google Scholar 

  19. 19.

    Georgiadis A, Sauer D, Herrmann L, Breuer J, Zarei M, Stahr K (2014) Testing a new method for sequential silicon extraction on soils of a temperate-humid climate. Soil Res 52:645

    CAS  Article  Google Scholar 

  20. 20.

    Barão L, Vandevenne F, Clymans W, Frings P, Ragueneau O, Meire P, Conley DJ, Struyf E (2015) Alkaline-extractable silicon from land to ocean: a challenge for biogenic silicon determination. Limnol Oceanogr Methods 13:329–344.

    CAS  Article  Google Scholar 

  21. 21.

    Blecker SW, McCulley RL, Chadwick OA, Kelly EF (2006) Biologic cycling of silica across a grassland bioclimosequence. Global Biogeochem Cycles 20:1–11

    Article  Google Scholar 

  22. 22.

    Cornelis JT, Titeux H, Ranger J, Delvaux B (2011) Identification and distribution of the readily soluble silicon pool in a temperate forest soil below three distinct tree species. Plant Soil 342:369–378

    CAS  Article  Google Scholar 

  23. 23.

    Struyf E, Smis A, Van Damme S et al (2010) Historical land use change has lowered terrestrial silica mobilization. Nat Commun 1:129

    Article  Google Scholar 

  24. 24.

    Vandevenne F, Struyf E, Clymans W, Meire P (2012) Agricultural silica harvest: have humans created a new loop in the global silica cycle? Front Ecol Environ 10:243–248

    Article  Google Scholar 

  25. 25.

    Barão L, Clymans W, Vandevenne F, Meire P, Conley DJ, Struyf E (2014) Pedogenic and biogenic alkaline-extracted silicon distributions along a temperate land-use gradient. Eur J Soil Sci 65:693–705

    Article  Google Scholar 

  26. 26.

    Unzué-Belmonte D, Ameijeiras-Mariño Y, Opfergelt S, Cornelis JT, Barão L, Minella J, Meire P, Struyf E (2017) Land use change affects biogenic silica pool distribution in a subtropical soil toposequence. Solid Earth 8:737–750

    Article  Google Scholar 

  27. 27.

    Keller C, Guntzer F, Barboni D, Meunier J (2012) Impact of agriculture on the Si biogeochemical cycle : input from phytolith studies. Compt Rendus Geosci 344:739–746

    CAS  Article  Google Scholar 

  28. 28.

    Vandevenne FI, Barão L, Ronchi B, Govers G, Meire P, Kelly EF, Struyf E (2015) Silicon pools in human impacted soils of temperate zones. Glob Biogeochem Cycles 29:1439–1450

    CAS  Article  Google Scholar 

  29. 29.

    Greenwood JE, Truesdale VW, Rendell a R (2001) Biogenic silica dissolution in seawater — in vitro chemical kinetics. Prog Oceanogr 48:1–23

    Article  Google Scholar 

  30. 30.

    Koning E, Epping E, van RW (2002) Determining biogenic silica in marine samples by tracking silicate and aluminium concentrations in alkaline leaching solutions. Aquat Geochem 8:37–67

    CAS  Article  Google Scholar 

  31. 31.

    Clymans W, Barão L, Van Der Putten N et al (2015) The contribution of tephra constituents during biogenic silica determination: implications for soil and palaeoecological studies. Biogeosciences 12:3789–3804

    CAS  Article  Google Scholar 

  32. 32.

    Saccone L, Conley DJ, Koning E, Sauer D, Sommer M, Kaczorek D, Blecker SW, Kelly EF (2007) Assessing the extraction and quantification of amorphous silica in soils of forest and grassland ecosystems. Eur J Soil Sci 58:1446–1459

    CAS  Article  Google Scholar 

  33. 33.

    Ronchi B, Barão L, Clymans W, Vandevenne F, Batelaan O, Govers G, Struyf E, Dassargues A (2015) Factors controlling Si export from soils : a soil column approach. Catena 133:85–96

    CAS  Article  Google Scholar 

  34. 34.

    Clymans W, Struyf E, Govers G, Vandevenne F, Conley DJ (2011) Anthropogenic impact on amorphous silica pools in temperate soils. Biogeosciences 8:2281–2293

    CAS  Article  Google Scholar 

  35. 35.

    Berggren D, Mulder J (1995) The role of organic matter in controlling aluminum solubility in acidic mineral soil horizons. Geochim Cosmochim Acta 59:4167–4180

    CAS  Article  Google Scholar 

  36. 36.

    Schaetzl RJ, Anderson S (2005) Soils genesis and geomorphology. Cambridge University Press, New York

    Book  Google Scholar 

  37. 37.

    Tisdall JM, Oades JM (1982) Organic matter and water-stable aggregates in soils. J Soil Sci 33:141–163

    CAS  Article  Google Scholar 

  38. 38.

    Hudson B (1994) Soil organic matter and available water capacity. J Soil Water Conserv 49:189–194

    Google Scholar 

  39. 39.

    Lugtenberg B, Kamilova F (2009) Plant-growth-promoting Rhizobacteria. Annu Rev Microbiol 63:541–556

    CAS  Article  Google Scholar 

  40. 40.

    Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350

    CAS  Article  Google Scholar 

  41. 41.

    Cornelis JT, Delvaux B (2016) Soil processes drive the biological silicon feedback loop. Funct Ecol 30:1298–1310

    Article  Google Scholar 

  42. 42.

    Guntzer F, Keller C, Poulton PR, McGrath SP, Meunier JD (2012) Long-term removal of wheat straw decreases soil amorphous silica at Broadbalk, Rothamsted. Plant Soil 352:173–184

    CAS  Article  Google Scholar 

  43. 43.

    Barão L, Alaoui A, Ferreira C, Basch G, Schwilch G, Geissen V, Sukkel W, Lemesle J, Garcia-Orenes F, Morugán-Coronado A, Mataix-Solera J, Kosmas C, Glavan M, Pintar M, Tóth B, Hermann T, Vizitiu OP, Lipiec J, Reintam E, Xu M, di J, Fan H, Wang F (2019) Assessment of promising agricultural management practices. Sci Total Environ 649:610–619

    Article  Google Scholar 

  44. 44.

    Klotzbücher T, Klotzbücher A, Kaiser K, Merbach I, Mikutta R (2018) Impact of agricultural practices on plant-available silicon. Geoderma 331:15–17

    Article  Google Scholar 

Download references


L. Barão was supported by grant SFRH/BPD/115681/2016 and R.F.M. Teixeira by grant SFRH/BPD/111730/2015 from Fundação para a Ciência e Tecnologia (FCT).

Author information



Corresponding author

Correspondence to Lúcia Barão.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Barão, L., Teixeira, R., Vandevenne, F. et al. Silicon Mobilization in Soils: the Broader Impact of Land Use. Silicon 12, 1529–1538 (2020).

Download citation


  • Land use gradient
  • Availability
  • Batch experiment
  • Silicon pools