Dry Sliding Friction and Wear Behaviour of AA6082-TiB2 in Situ Composites


In this study a composite with AA6082 as the matrix and TiB2 as the reinforcement has been fabricated by in situ method. The effect of TiB2 addition on the mechanical and tribological behaviour has been investigated. The purpose of the study is to improve the friction and wear properties of AA6082 so as to widen the engineering applications of the alloy. The reinforcement varied as (0, 3, 6, 9 wt%). The mechanical characteristics such as hardness and density improved with the addition of the reinforcement particles. The microhardness also shows slight increase in its value with increase in reaction time. The microstructural examination depicted grain refinement of the cast composites with increase in reinforcement. The wear resistance also increases with the addition of the reinforcement. The coefficient of friction exhibited an increasing trend and thereafter it decreased with increasing reinforcement at lower load. However, at higher load, an increase in the coefficient of friction is observed with an increase in reinforcement. SEM and EDS analysis revealed distinct wear mechanisms for different composites and different loads. The present study reveals that with addition of hard TiB2 particles the mechanical and tribological of AA6082 are improved. The results suggest that the developed composite material could be a potential material for various engineering applications.

This is a preview of subscription content, access via your institution.


  1. 1.

    Prasad SV, Asthana R (2004) Aluminum metal-matrix composites for automotive applications: Tribological considerations. Tribol Lett 17(3):445–453

    CAS  Article  Google Scholar 

  2. 2.

    S. Jayalakshmi and M. Gupta, Light Metal Matrix Composites, in Metallic Amorphous Alloy Reinforcements in Light Metal Matrices, Springer, 2015, pp. 7–58

  3. 3.

    A. Anand, M. I. U. Haq, K. Vohra, A. Raina, and M. F. Wani, Role of green tribology in sustainability of mechanical systems: a state of the art survey, Mater Today Proc, vol. 4, no. 2, pp. 3659–3665, 2017

  4. 4.

    S. Dev, A. Aherwar, and A. Patnaik, Preliminary evaluations on development of recycled porcelain reinforced LM-26/Al-Si10Cu3Mg1 alloy for piston materials, Silicon, pp. 1–17, 2018

  5. 5.

    Hirsch J (2014) Recent development in aluminium for automotive applications. Trans Nonferrous Metals Soc China 24(7):1995–2002

    CAS  Article  Google Scholar 

  6. 6.

    Naik SK, Sanjay SJ, Math VB, Matti RS (2015) Connecting rod made using particulate reinforced aluminum metal matrix composite - a review. J Emerg Technol Innov Res 2(12):228–233

    Google Scholar 

  7. 7.

    M. I. Ul Haq and A. Anand (2018) Dry sliding friction and wear behaviour of hybrid AA7075/Si 3 N 4 /Gr self lubricating composites. Mater Res Express 5(6):66544. https://doi.org/10.1088/2053-1591/aacc50

  8. 8.

    Yadav PK, Dixit G (2018) Erosive-corrosive Wear of Aluminium-silicon matrix (AA336) and SiC p/TiB 2p ceramic composites. Silicon:1–12

  9. 9.

    M. Irfan, U. Haq, and A. Anand, Dry sliding friction and Wear behavior of AA7075-Si 3 N 4 composite. 2018. https://doi.org/10.1007/s12633-017-9675-1

  10. 10.

    A. Tyagi, Y. Koli, and D. Sharma, Fabrication & Mechanical Testing of AA6082/Si3N4 composites, 2018

  11. 11.

    Sharma P, Khanduja D, Sharma S (2014) Metallurgical and Mechanical Characterization of Al 6082-B<sub>4</sub>C/Si<sub>3</sub>N<sub>4</sub> Hybrid Composite Manufactured by Combined Ball Milling and Stir Casting. Appl Mech Mater 592–594:484–488

    Article  Google Scholar 

  12. 12.

    Sharma P, Sharma S, Khanduja D (2015) Production and some properties of Si3N4 reinforced aluminium alloy composites. J Asian Ceram Soc 3(3):352–359

    Article  Google Scholar 

  13. 13.

    S. Singh, S. P. Dwivedi, H. S. Pali, and M. T. Student, Wear Characterization of Aa6082 / Sic Composite Produced By Mechanical Stir Casting Process Department of Mechanical & Engineering , Noida Institute of Engineering and * Corresponding author Email Id : shashi_gla47@rediffmail.com, pp. 2–8

  14. 14.

    Kahrıman F, Zeren M (2017) The effect of Zr on aging kinetics and properties of as-cast AA6082 alloy. Int J Met 11(2):216–222

    Google Scholar 

  15. 15.

    A. Thangarasu, N. Murugan, I. Dinaharan, and ..., Processing and characterization of AA 6082/TiC composites by stir casting, Emerg. Mater. …, pp. 1–7, 2014

  16. 16.

    Singh G, Goyal S (2016) Microstructure and mechanical behavior of AA6082-T6/SiC/B4C-based aluminum hybrid composites. Part Sci Technol 0(0):1–8

    Google Scholar 

  17. 17.

    Jeevan V, Rao CSP, Selvaraj N, Rao GB (2018) Fabrication and characterization of AA6082 ZTA composites by powder metallurgy process. Mater Today Proc 5(1):254–260

    CAS  Article  Google Scholar 

  18. 18.

    E. Teko\uglu, D. A\ugao\ugullar\i, S. Mertdinç, and M. L. Öveço\uglu, Effects of reinforcement content and sequential milling on the microstructural and mechanical properties of TiB2 particulate-reinforced eutectic Al-12.6 wt% Si composites, J Mater Sci, vol. 53, no. 4, pp. 2537–2552, 2018

  19. 19.

    Akbari MK, Baharvandi HR, Shirvanimoghaddam K (2015) Tensile and fracture behavior of nano / micro TiB 2 particle reinforced casting A356 aluminum alloy composites. Mater Des 66:150–161

    Article  Google Scholar 

  20. 20.

    A. Kamble, Grain refiner master alloys and grain modifiers for the aluminum foundry, pp. 1–11, 2016

  21. 21.

    Kumar N, Gautam G, Gautam RK, Mohan A, Mohan S (2016) Synthesis and characterization of TiB2 reinforced Aluminium matrix composites: a review. J Inst Eng Ser D 97(2):233–253

    Article  Google Scholar 

  22. 22.

    Poria S, Sahoo P, Sutradhar G (2016) Tribological characterization of stir-cast aluminium-TiB 2 metal matrix composites. Silicon 8(4):591–599

    CAS  Article  Google Scholar 

  23. 23.

    M. O. Lai, Impro v ement in mechanical properties of in-situ Al Á TiB 2 composite by incorporation of carbon, vol. 3, pp. 227–231, 2003

  24. 24.

    Asthana R (1998) Reinforced cast metals: part II evolution of the interface. J Mater Sci 33(8):1959–1980

    CAS  Article  Google Scholar 

  25. 25.

    Ren S, He X, Qu X, Li Y (2008) Effect of controlled interfacial reaction on the microstructure and properties of the SiCp/Al composites prepared by pressureless infiltration. J Alloys Compd 455(1):424–431

    CAS  Article  Google Scholar 

  26. 26.

    N. R. Rajasekaran and V. Sampath, Effect of in-situ TiB2 particle addition on the mechanical properties of AA 2219 Al alloy composite, J. Miner. Mater. Charact. Eng., vol. 10, no. 6, p. 527, 2011

  27. 27.

    S. Kumar, M. Chakraborty, V. S. Sarma, and B. S. Murty, Tensile and wear behaviour of in situ Al – 7Si / TiB 2 particulate composites, vol. 265, pp. 134–142, 2008

  28. 28.

    V. Mohanavel, K. Rajan, and K. R. Senthil Kumar, Study on Mechanical Properties of AA6351 Alloy Reinforced with Titanium Di-Boride (TiB<sub>2</sub>) Composite by <i>In Situ</i> Casting Method, Appl Mech Mater, vol. 787, pp. 583–587, 2015

  29. 29.

    Michael Rajan HB, Ramabalan S, Dinaharan I, Vijay SJ (2013) Synthesis and characterization of in situ formed titanium diboride particulate reinforced AA7075 aluminum alloy cast composites. Mater Des 44:438–445

    CAS  Article  Google Scholar 

  30. 30.

    Ramesh CS, Ahamed A, Channabasappa BH, Keshavamurthy R (2010) Development of Al 6063-TiB2 in situ composites. Mater Des 31(4):2230–2236

    CAS  Article  Google Scholar 

  31. 31.

    Suresh S, Moorthi NSV (2013) Process development in stir casting and investigation on microstructures and wear behavior of TiB2on A16061 MMC. Procedia Eng 64:1183–1190

    CAS  Article  Google Scholar 

  32. 32.

    Lu L, Lai MO, Chen FL (1997) In situ preparation of TiB2 reinforced Al base composite. Adv Compos Mater 6(4):299–308

    CAS  Article  Google Scholar 

  33. 33.

    Jeykrishnan J, Nathan SJ, Karthik MR (2017) Fabrication and characterization of aluminum titanium di-boride metal matrix composites using stir casting technique. Int J Mech Eng Technol 8(4):13–18

    Google Scholar 

  34. 34.

    Ravnikar D, Mrvar P, Medved J, Grum J (2013) Microstructural analysis of laser coated ceramic components TiB2 and TiC on aluminium alloy en AW-6082-T651. Stroj Vestnik/Journal Mech Eng 59(5):281–290

    Article  Google Scholar 

  35. 35.

    McCartney DG (1989) Grain refining of aluminium and its alloys using inoculants. Int Mater Rev 34(1):247–260

    CAS  Article  Google Scholar 

  36. 36.

    Mallikarjuna C, Shashidhara SM, Mallik US, Parashivamurthy KI (2011) Grain refinement and wear properties evaluation of aluminum alloy 2014 matrix-TiB2 in-situ composites. Mater Des 32(6):3554–3559

    CAS  Article  Google Scholar 

  37. 37.

    Wang C, Wang M, Yu B, Chen D, Qin P, Feng M, Dai Q (2007) The grain refinement behavior of TiB2 particles prepared with in situ technology. Mater Sci Eng A 459(1–2):238–243

    Article  Google Scholar 

  38. 38.

    Lawrance CA, Prabhu PS (2015) Al 6061-TiB 2 metal matrix composite synthesized with different reaction holding times by in-situ method. Int J Compos Mater 5(5):97–101

    CAS  Google Scholar 

  39. 39.

    Hamid AA, Ghosh PK, Jain SC, Ray S (2006) Influence of particle content and porosity on the wear behaviour of cast in situ Al (Mn)--Al2O3 (MnO2) composite. Wear 260(4–5):368–378

    CAS  Article  Google Scholar 

  40. 40.

    Keshavamurthy R, Mageri S, Raj G, Naveenkumar B, Kadakol PM, Vasu K (2013) Microstructure and mechanical properties of Al7075-TiB 2 in-situ composite. Res J Mater Sci 1(10):6–10

    Google Scholar 

  41. 41.

    C. Chen, J. Luo, Z. Guo, W. Yang, and J. Chen, Microstructural evolution and mechanical properties of in situ TiB 2 / Al composites under high-intensity ultrasound, vol. 34, pp. 168–172, 2015

  42. 42.

    R. G. Guan and D. Tie, A review on grain refinement of aluminum alloys: progresses, challenges and prospects, Acta Metall Sin (English Lett, vol. 30, no. 5, pp. 409–432, 2017

  43. 43.

    Shen Y-L, Chawla N (2001) On the correlation between hardness and tensile strength in particle reinforced metal matrix composites. Mater Sci Eng A 297(1–2):44–47

    Article  Google Scholar 

  44. 44.

    K. R. Ramkumar, H. Bekele, and S. Sivasankaran, Experimental Investigation on Mechanical and Turning Behavior of Al 7075/x% wt. TiB2–1% Gr In Situ Hybrid Composite, Adv Mater Sci Eng, vol. 2015, 2015

  45. 45.

    Mandal A, Chakraborty M, Murty BS (2007) Effect of TiB2 particles on sliding wear behaviour of Al--4Cu alloy. Wear 262(1–2):160–166

    CAS  Article  Google Scholar 

  46. 46.

    Zhang ZF, Zhang LC, Mai Y-W (1995) Particle effects on friction and wear of aluminium matrix composites. J Mater Sci 30(23):5999–6004

    CAS  Article  Google Scholar 

  47. 47.

    A. Mahamani, A. Jayasree, K. Mounika, K. R. Prasad, and N. Sakthivelan, Evaluation of mechanical properties of AA6061- TiB 2 / ZrB 2 in-situ metal matrix composites fabricated by K 2 TiF 6 – KBF 4 – K 2 ZrF 6 reaction system, vol. 10, pp. 185–200, 2015

  48. 48.

    Archard J (1953) Contact and rubbing of flat surfaces. J Appl Phys 24(8):981–988

    Article  Google Scholar 

  49. 49.

    Baradeswaran A, Elaya Perumal A (Nov. 2013) Influence of B4C on the tribological and mechanical properties of Al 7075-B4C composites. Compos Part B Eng 54(1):146–152

    CAS  Article  Google Scholar 

  50. 50.

    Ul Haq MI, Anand A (2018) Friction and Wear behavior of AA 7075- Si3N4 composites under dry conditions: effect of sliding speed. Silicon, Aug.

    Google Scholar 

  51. 51.

    Mazahery A, Shabani MO (2012) A comparative study on abrasive wear behavior of semisolid--liquid processed Al--Si matrix reinforced with coated B4C reinforcement. Trans Indian Inst Metals 65(2):145–154

    CAS  Article  Google Scholar 

  52. 52.

    Thakur SK, Dhindaw BK (2001) The influence of interfacial characteristics between SiCp and mg/Al metal matrix on wear, coefficient of friction and microhardness. Wear 247(2):191–201

    CAS  Article  Google Scholar 

  53. 53.

    Venkataraman B, Sundararajan G (2000) Correlation between the characteristics of the mechanically mixed layer and wear behaviour of aluminium, Al-7075 alloy and Al-MMCs. Wear 245(1–2):22–38

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Mir Irfan Ul Haq.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Singh, H., Haq, M.I.U. & Raina, A. Dry Sliding Friction and Wear Behaviour of AA6082-TiB2 in Situ Composites. Silicon 12, 1469–1479 (2020). https://doi.org/10.1007/s12633-019-00237-y

Download citation


  • Composites
  • In situ method
  • AA6082
  • Friction
  • Wear
  • TiB2