Skip to main content
Log in

Growth and Characterization of Undoped Polysilicon Thick Layers: Revisiting an Old System

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Thick layer of polycrystalline silicon (poly-Si) grown by Atmospheric Pressure Chemical Vapor Deposition (APCVD) is still a reference material in a number of applications, despite the high thermal budget of this technique. This work presents a material study of undoped poly-Si layers of different thicknesses, using different characterization techniques such as secondary electron microscope in backscattered detection configuration, electron backscattering diffraction imaging, secondary ion mass spectrometry and spreading resistance profiling. The poly-Si layers, grown at 1000 °C by APCVD on thermal oxide, were found to have a columnar microstructure with [110] main orientation. By correlating layer purity, grain size and electrical resistivity, no straightforward relation between grain size and resistivity could be found. The layers resistivity is found almost independent on thickness and thus grain size. The possible reasons for such difference with previous other works are discussed taking into account the grain size determination uncertainty and the electrical characterization limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schropp REI (2004) Present status of micro- and polycrystalline silicon solar cells made by hot-wire chemical vapor deposition. Thin Solid Films 451–452:455–465. https://doi.org/10.1016/j.tsf.2003.10.126

    Article  CAS  Google Scholar 

  2. Deckers J, Bourgeois E, Jivanescu M, Abass A, van Gestel D, van Nieuwenhuysen K, Douhard B, D'Haen J, Nesladek M, Manca J, Gordon I, Bender H, Stesmans A, Mertens R, Poortmans J (2015) Comparing n- and p-type polycrystalline silicon absorbers in thin-film solar cells. Thin Solid Films 579:144–152. https://doi.org/10.1016/j.tsf.2015.02.058

    Article  CAS  Google Scholar 

  3. Stewart M, Howell RS, Pires L, Hatalis MK (2001) Polysilicon TFT technology for active matrix OLED displays. IEEE Trans Electron Devices 48:845–851. https://doi.org/10.1109/16.918227

    Article  CAS  Google Scholar 

  4. Van den Bosch G, Kar GS, Blomme P et al (2011) Highly scaled vertical cylindrical SONOS cell with bilayer polysilicon channel for 3-D NAND flash memory. IEEE Electron Device Lett 32:1501–1503. https://doi.org/10.1109/LED.2011.2164775

    Article  CAS  Google Scholar 

  5. Judy JW (2001) Microelectromechanical systems (MEMS): fabrication, design and applications. Smart Mater Struct 10:1115–1134. https://doi.org/10.1088/0964-1726/10/6/301

    Article  Google Scholar 

  6. Proano RE, Misage RS, Ast DG (1989) Development and electrical properties of undoped polycrystalline silicon thin-film transistors. IEEE Trans Electron Devices 36:1915–1922. https://doi.org/10.1109/16.34270

    Article  CAS  Google Scholar 

  7. Card HC, Yang ES (1977) Electronic processes at grain boundaries in polycrystalline semiconductors under optical illumination. IEEE Trans Electron Devices 24:397–402. https://doi.org/10.1109/T-ED.1977.18747

    Article  Google Scholar 

  8. Maier-Schneider D, Köprülülü A, Holm SB, Obermeier E (1996) Elastic properties and microstructure of LPCVD polysilicon films. J Micromechanics Microengineering 6:436–446. https://doi.org/10.1088/0960-1317/6/4/011

    Article  CAS  Google Scholar 

  9. Kamins T (2012) Polycrystalline silicon for integrated circuits and displays. Springer Science & Business Media

  10. Lysacek V, Valek L Structural changes in polycrystalline silicon layers during high temperature annealing. On Semiconductor Czech Republic

  11. Kamins TI, Mandurah MM, Saraswat KC (1978) Structure and stability of low pressure chemically vapor-deposited silicon films. J Electrochem Soc 125:927–932. https://doi.org/10.1149/1.2131593

    Article  CAS  Google Scholar 

  12. Faggin F, Klein T (1970) Silicon gate technology. Solid State Electron 13:1125–1144. https://doi.org/10.1016/0038-1101(70)90124-3

    Article  Google Scholar 

  13. Seto JYW (1975) The electrical properties of polycrystalline silicon films. J Appl Phys 46:5247–5254. https://doi.org/10.1063/1.321593

    Article  CAS  Google Scholar 

  14. Joseph JD, Kamins TI (1972) Resistivity of chemically deposited polycrystalline-silicon films. Solid State Electron 15:355–358. https://doi.org/10.1016/0038-1101(72)90090-1

    Article  CAS  Google Scholar 

  15. Werner F (2017) Hall measurements on low-mobility thin films. J Appl Phys 122:135306. https://doi.org/10.1063/1.4990470

    Article  CAS  Google Scholar 

  16. Mazur RG, Dickey DH (1966) A spreading resistance technique for resistivity measurements on silicon. J Electrochem Soc 113:255. https://doi.org/10.1149/1.2423927

    Article  CAS  Google Scholar 

  17. Goldstein JI, Newbury DE, Michael JR et al (2017) Scanning Electron microscopy and X-ray microanalysis. Springer

  18. Wilkinson AJ, Hirsch PB (1997) Electron diffraction based techniques in scanning electron microscopy of bulk materials. Micron 28:279–308. https://doi.org/10.1016/S0968-4328(97)00032-2

    Article  Google Scholar 

  19. Tüzün Ö, Auger JM, Gordon I, Focsa A, Montgomery PC, Maurice C, Slaoui A, Beaucarne G, Poortmans J (2008) EBSD analysis of polysilicon films formed by aluminium induced crystallization of amorphous silicon. Thin Solid Films 516:6882–6887. https://doi.org/10.1016/j.tsf.2007.12.105

    Article  CAS  Google Scholar 

  20. Hammond ML (2001) 2 - silicon epitaxy by chemical vapor deposition. In: Seshan K (ed) Handbook of thin film deposition processes and techniques (second edition). William Andrew Publishing, Norwich, NY, pp 45–110

    Chapter  Google Scholar 

  21. Buss RJ, Ho P, Breiland WG, Coltrin ME (1988) Reactive sticking coefficients for silane and disilane on polycrystalline silicon. J Appl Phys 63:2808–2819. https://doi.org/10.1063/1.340982

    Article  CAS  Google Scholar 

  22. Kamins TI, Cass TR (1973) Structure of chemically deposited polycrystalline-silicon films. Thin Solid Films 16:147–165. https://doi.org/10.1016/0040-6090(73)90164-8

    Article  CAS  Google Scholar 

  23. Lu NCC, Lu CY, Lee MK et al (1984) The effect of film thickness on the electrical properties of LPCVD polysilicon films. J Electrochem Soc 131:897–902. https://doi.org/10.1149/1.2115724

    Article  CAS  Google Scholar 

  24. Ratanaphan S, Yoon Y, Rohrer GS (2014) The five parameter grain boundary character distribution of polycrystalline silicon. J Mater Sci 49:4938–4945. https://doi.org/10.1007/s10853-014-8195-2

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been financially supported by European Union in the framework of the ECSEL-JU REFERENCE project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taguhi Yeghoyan.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interests of any sort.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeghoyan, T., Alassaad, K., Soulière, V. et al. Growth and Characterization of Undoped Polysilicon Thick Layers: Revisiting an Old System. Silicon 12, 1187–1194 (2020). https://doi.org/10.1007/s12633-019-00209-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-019-00209-2

Keywords

Navigation