Skip to main content
Log in

Role of Oxygen Potential and Oxygen Ions on Phosphorus Removal from Silicon via Addition of FeO into Slag

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In present work, the role of the oxygen potential (PO2) and oxygen ion (O2−) concentration for removing phosphorus (P) during CaO–SiO2–Al2O3–FexO slag refining was studied by on-line measurement of oxygen activity in molten silicon (Si), FactSage calculation, Raman spectroscopy and nuclear magnetic resonance (NMR) spectroscopy. The results show that the addition of FeO from 0 to 9.25 wt% in slag can increase the activity of dissolved oxygen (a[O]) in Si and the mole fraction of O2− in slag. Moreover, the increase of O2− concentration leads to the increase of non-bridge oxygen (NBO). The value of LP (the partition ratio of phosphorous between slag and Si shows a first increase and then decrease trend and reaches a maximum value of 1.95 at 5 ± 0.1 wt% FeO. It is believed that the increase of a[O] and NBO can promote the removal of P as FeO content is less than 5 ± 0.1 wt%. the chain structure unit (Q2) of silicate network as the main intermediate structure to capture PO43− from the charge compensation of P2O5 by O2− to form the sheet structure unit Q3(Si and P). When FeO content is increased to more than 5 ± 0.1 wt%, LP value gradually decreases although the values of NBO and a[O] are increasing. NBO plays a leading role in this process, it can be speculated that more NBO can depolymerize the Q3 (Si and P) to destroy the stability of P in silicate network. As a result, a mount of PO43− is present at the interface to prevent the oxidation of phosphorous, which leads to the decrease of LP value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Luque A, Hegedus S (2003) Handbook of photovoltaic science and engineering. Wiley Ltd, New York Chapter 5

    Google Scholar 

  2. Sarti D, Einhaus R (2002) Silicon feedstock for the multi-crystalline photovoltaic industry. Sol Energ Mat Sol C 72:27–40

    CAS  Google Scholar 

  3. Sergiienko SA, Pogorelov BV, Daniliuk VB (2014) Silicon and silicon carbide powders recycling technology from wire-saw cutting waste in slicing process of silicon ingots. Sep Purif Technol 133:16–23

    CAS  Google Scholar 

  4. Hachichi K, Lami A, Zemmouri H, Cuellar P, Soni R, Ait-Amar H, Drouiche N (2018). Silicon 10:1579–1589

    CAS  Google Scholar 

  5. Pushpavanam M, Manikandan H, Ramanathan K (2007) Preparation and characterization of nickel–cobalt-diamond electro-composites by sediment co-deposition. Surf Coat Technol 201:6372–6379

    CAS  Google Scholar 

  6. Liu S, Huang K, Zhu H (2016) Removal of Fe, B and P impurities by enhanced separation technique from silicon-rich powder of the multi-wire sawing slurry. Chem Eng J 299:276–281

    CAS  Google Scholar 

  7. Lu T, Tan Y, Li J, Deng D (2018) Recycling of silicon powder waste cut by a diamond-wire saw through laser-assisted vacuum smelting. J Clean Prod 203:574–584

    CAS  Google Scholar 

  8. Tomono Z, Miyamoto S, Ogawa T, Furuya H, Okamura Y, Yoshimoto M, Komatsu R, Nakayama M (2013) Recycling of kerf loss silicon derived from diamond-wire saw cutting process by chemical approach. Sep Purif Technol 120:304–309

    CAS  Google Scholar 

  9. Lin Y, Wang T, Lan C, Tai CY (2010) Recovery of silicon powder from kerf loss slurry by centrifugation. Powder Technol 200:216–223

    CAS  Google Scholar 

  10. Wang TY, Lin YC, Tai CY, Sivakumar R, Rai DK, Lan CW (2008) A novel approach for recycling of kerf loss silicon from cutting slurry waste for solar cell applications. J Cryst Growth 310:3403–3406

    CAS  Google Scholar 

  11. Jia G, Plentz J, Gawlik A, Azar AS, Stokkan G, Syvertsen M, Carvalho PA, Dellith J, Dellith A, Andrä G, Ulyashin A (2016). Int J Photoenergy 19:7582–7589

    Google Scholar 

  12. Suzuki K, Kumagal T, Sano N (1992) Removal of boron from metallurgical-grade silicon by applying the plasma treatment. ISIJ Int 32:630–634

    CAS  Google Scholar 

  13. Ikeda T, Maeda M (1992) Purification of metallurgical silicon for solar-grade silicon by electron beam button melting. ISIJ Int 32:635–642

    CAS  Google Scholar 

  14. Momokawa H, Sano N (1982) The effect of oxygen potential on phosphorus in the CaO−Al2O3 system. Metall Mater Trans B Process Metall Mater Process Sci 13:643–644

    Google Scholar 

  15. Tanahashi M, Fujisawa T (2013). Metall Mater Trans B Process Metall Mater Process Sci 45:629–642

    Google Scholar 

  16. Jung EJ, Moon BM, Min DJ (2011) Quantitative evaluation for effective removal of phosphorus for SoG-Si. Sol Energy Mater Sol Cells 95:1779–1784

    CAS  Google Scholar 

  17. Johnston M, Barati M (2010) Distribution of impurity elements in slag–silicon equilibria for oxidative refining of metallurgical silicon for solar cell applications. Sol Energ Mater Sol Cells 94:2085–2090

    CAS  Google Scholar 

  18. Teixeira LAV, Morita K (2009) Removal of boron from molten silicon using CaO–SiO2 based slags. ISIJ Int 49:783–787

    CAS  Google Scholar 

  19. Wu JJ, Wang FM, Ma WH (2016) Thermodynamics and kinetics of boron removal from metallurgical grade silicon by addition of high basic potassium carbonate to calcium silicate slag. Metall Mater Trans B Process Metall Mater Process Sci 47:1796–1803

    CAS  Google Scholar 

  20. Krystad E, Tang K, Tranell G (2012). JOM. 64:968–972

    CAS  Google Scholar 

  21. Li FS, Li XP, Yang SF (2017) Distribution ratios of phosphorus between CaO-FeO-SiO2-Al2O3/Na2O/TiO2 slags and carbon-saturated iron. Metall Mater Trans B Process Metall Mater Process Sci 48:2367–2378

    CAS  Google Scholar 

  22. Nagabayashi R, Hino M, Ban-Ya S (1989) Mathematical expession of phosphorus distribution in steelmaking process by quadratic formalism. ISIJ Int 29:140–147

    Google Scholar 

  23. Danaei A, Yang YD, Barati MC, Ravindran R (2013). Mater Sci Technol 27 CD only

  24. Pak JJ, Fruehan RJ (1986) Soda slag system for hot metal dephosphorization. Metall Mater Trans B Process Metall Mater Process Sci 17:797–804

    Google Scholar 

  25. Yang XM, Shi CB, Zhang M (2011) A thermodynamic model of phosphate capacity for CaO-SiO2-MgO-FeO-Fe2O3-MnO-Al2O3-P2O5 slags equilibrated with molten steel during a top–bottom combined blown converter steelmaking process based on the ion and molecule coexistence theory. Metall Mater Trans B Process Metall Mater Process Sci 42:951–977

    CAS  Google Scholar 

  26. Morales AT, Fruehan RJ (1997) Thermodynamics of MnO, FeO, and phosphorus in steelmaking slags with high MnO contents. Metall Mater Trans B Process Metall Mater Process Sci 28:1111–1118

    Google Scholar 

  27. Qian GY, Wang Z, Gong XZ (2017) The importance of slag structure to boron removal from silicon during the refining process: insights from raman and nuclear magnetic resonance spectroscopy study. Metall Mater Trans B Process Metall Mater Process Sci 48:3239–3250

    CAS  Google Scholar 

  28. Teixeira LAV, Tokuda Y, Yoko T, Morita K (2009) Behavior and state of boron in CaO–SiO2 slags during refining of solar grade silicon. ISIJ Int 49:777–782

    CAS  Google Scholar 

  29. Tsunawaki Y, Iwamoto N, Hattori T, Mitsuishi A (1981) Analysis of CaO · SiO2 and CaO · SiO2 · CaF2 glasses by Raman spectroscopy. J Non-Cryst Solids 44:369–378

    CAS  Google Scholar 

  30. Sun YQ, Zhang ZT (2015). Metall Mater Trans B Process Metall Mater Process Sci 46B:1549–1554

    Google Scholar 

  31. Seifert FA, Mysen BO, Virgo D (1982). Am Mineral 67:696–717

    CAS  Google Scholar 

  32. Tan J, Zhao SR, Wang WF (2004) The effect of cooling rate on the structure of sodium silicate glass. Mater Sci Eng B 106:295–299

    Google Scholar 

  33. Wang ZJ, Shu Q (2015) Effect of P2O5 and FetO on the viscosity and slag structure in steelmaking slags. Metall Mater Trans B Process Metall Mater Process Sci 46:758–765

    CAS  Google Scholar 

  34. McIntyre NS, Zetaruk DG (1977) X-ray photoelectron spectroscopic studies of iron oxides. Anal Chem 49:1521–1529

    CAS  Google Scholar 

  35. Hawn DD, DeKoven BM (1987) Deconvolution as a correction for photoelectron inelastic energy losses in the core level XPS spectra of iron oxides. Surf Interface Anal 10:63–74

    CAS  Google Scholar 

  36. Mills P, Sullivan JL (1983) A study of the core level electrons in iron and its three oxides by means of X-ray photoelectron spectroscopy. J Phys D Appl Phys 16:723–732

    CAS  Google Scholar 

  37. Langevoort JC, Sutherland I, Hanekamp LJ, Gellings PJ (1987) On the oxide formation on stainless steels AISI 304 and incoloy 800H investigated with XPS. Appl Surf Sci 28:167–179

    CAS  Google Scholar 

  38. Tan BJ, Klabunde KJ, Sherwood PA (1990) X-ray photoelectron spectroscopy studies of solvated metal atom dispersed catalysts. Monometallic iron and bimetallic iron-cobalt particles on alumina. Chem Mater 2:186–191

    CAS  Google Scholar 

  39. Lockyer MWG, Holland D, Dupree R (1995) NMR investigation of the structure of some bioactive and related glasses. J Non-Cryst Solids 188:207–219

    CAS  Google Scholar 

  40. Fayon F, Massiot D, Suzuya K, Price DL (2001) 31P NMR study of magnesium phosphate glasses. J Non-Cryst Solids 283:88–94

    CAS  Google Scholar 

  41. Tilocca A, Cormack AN, de Leeuw NH (2007) The Structure of Bioactive Silicate Glasses: New Insight from Molecular Dynamics Simulations. Chem Mater 19:95–103

    CAS  Google Scholar 

  42. Mysen BO, Ryerson FJ, Virgo D (l981). Am Mineral 66:106–117

  43. Kline J, Tangstad M, Tranell G (2015). Metall Mater Trans B Process Metall Mater Process Sci 46B:62–73

    Google Scholar 

  44. Tillmanns E, Gebert W, Baur WH (1973). J Solid State Chem 7:69–84

    CAS  Google Scholar 

  45. Poojary DM, Borade RB, Campbeii III FL, Clearfield A (1994). J Solid State Chem 112:106–112

    CAS  Google Scholar 

  46. Elgayar I, Aliev AE, Boccaccini AR, Hill RG (2005) Structural analysis of bioactive glasses. J Non-Cryst Solids 351:173–183

    CAS  Google Scholar 

  47. Dupree R, Holland D, Mortuza MG, Collins JA, Lockyer MWG (1989) Magic angle spinning NMR of alkali phospho-alumino-silicate glasses. J Non-Cryst Solids 112:111–117

    Google Scholar 

  48. Tilocca A, Cormack AN (2007) Structural effects of phosphorus inclusion in bioactive silicate glasses. J Phys Chem B 111:14256–14264

    CAS  PubMed  Google Scholar 

  49. Martynov PV, Chernov ME, Levskit VA (2005). Atom Energy 98:343–346

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (Nos. 51604256 and U1702251), National Key R&D Program of China (2018YFC1901801) and Beijing Natural Science Foundation (2192055).

Author information

Authors and Affiliations

Author notes

  1. Guoyu Qian and Nan Zhang Thurmond are co-first authors.

    Authors

    Corresponding author

    Correspondence to Zhi Wang.

    Additional information

    Publisher’s Note

    Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

    Rights and permissions

    Reprints and permissions

    About this article

    Check for updates. Verify currency and authenticity via CrossMark

    Cite this article

    Zhang, N., Qian, G., Wang, Z. et al. Role of Oxygen Potential and Oxygen Ions on Phosphorus Removal from Silicon via Addition of FeO into Slag. Silicon 12, 1145–1156 (2020). https://doi.org/10.1007/s12633-019-00201-w

    Download citation

    • Received:

    • Accepted:

    • Published:

    • Issue Date:

    • DOI: https://doi.org/10.1007/s12633-019-00201-w

    Keywords

    Navigation