Skip to main content
Log in

Preparation of Nano-TiO2/Diatomite Composites by Non-hydrolytic Sol–Gel Process and its Application in Photocatalytic Degradation of Crystal Violet

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The dispersion of anatase TiO2 on diatomic material was a prospective route to avoid agglomerates of these particles. In this work, the TiO2/diatomite composites were prepared using a solvothermal process and a non-hydrolytic sol-gel method at low temperature on the raw (TDB) and the purified (TDS) diatomite. The synthesized samples were characterized utilizing various techniques. These given that TiO2 anatase was impregnated well on the surface of diatomite, and the immobilization of these particles tends to increase the thermal stability of the composite as compared to the raw diatomite. In addition, the photodegradation of crystal violet (CV) in solution was in the direction of TDB > TDS > TiO2. The 99.996% of CV can be degraded in 210 min of irradiation time at pH 10. These results revealed that the immobilization of titanium on diatomite improves the photocatalytic degradation by reducing the crystallite size of anatase TiO2.

Scheme of the Experimental photocatalytic degradation of Crystal Violet

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sun Z, Hu Z, Yan Y, Zheng S (2014) Effect of preparation conditions on the characteristics and photocatalytic activity of TiO2/purified diatomite composite photocatalysts. Appl Surf Sci 314:251–259

    CAS  Google Scholar 

  2. Luengas A, Barona A, Hort C, Gallastegui G, Platel V, Elias A (2015) A review of indoor air treatment technologies. Rev Environ Sci Biotechnol 14(3):499–522

    CAS  Google Scholar 

  3. de Lima ROA, Bazo AP, Salvadori DMF, Rech CM, de Palma Oliveira D, de Aragão Umbuzeiro G (2007) Mutagenic and carcinogenic potential of a textile azo dye processing plant effluent that impacts a drinking water source. Mutat Res Genet Toxicol Environ Mutagen 626(1–2):53–60

    Google Scholar 

  4. Yahagi T, Degawa M, Seino Y, Matsushima T, Nagao M, Sugimura T, Hashimoto Y (1975) Mutagenicity of carcinogenic azo dyes and their derivatives. Cancer Lett 1:91–96

    CAS  PubMed  Google Scholar 

  5. Kralchevska R, Milanova M, Tsvetkov M, Dimitrov D, Todorovsky D (2012) Influence of gamma-irradiation on the photocatalytic activity of Degussa P25 TiO2. J Mater Sci 47(12):4936–4945

    CAS  Google Scholar 

  6. Aicha B, Mohamed S, Jocelyne M-B, Benedicte L, Jean-Luc B, Abdelkader B (2018) Preparation of new microporous titanium pillared kenyaite materials active for the photodegradation of methyl orange. J Porous Mater 25(3):801–812

    CAS  Google Scholar 

  7. Mokhtar A, Djelad A, Bengueddach A, Sassi M (2018) CuNPs-magadiite/chitosan nanocomposite beads as advanced antibacterial agent: synthetic path and characterization. Int J Biol Macromol 118:2149–2155

    CAS  PubMed  Google Scholar 

  8. Liu S, Chen X, Chen X (2007) A TiO2/AC composite photocatalyst with high activity and easy separation prepared by a hydrothermal method. J Hazard Mater 143(1–2):257–263

    CAS  PubMed  Google Scholar 

  9. Han F, Kambala VSR, Srinivasan M, Rajarathnam D, Naidu R (2009) Tailored titanium dioxide photocatalysts for the degradation of organic dyes in wastewater treatment: a review. Appl Catal A Gen 359(1–2):25–40

    CAS  Google Scholar 

  10. Park Y, Kim W, Park H, Tachikawa T, Majima T, Choi W (2009) Carbon-doped TiO2 photocatalyst synthesized without using an external carbon precursor and the visible light activity. Appl Catal B Environ 91(1–2):355–361

    CAS  Google Scholar 

  11. Maldotti A, Molinari A (2011) Design of heterogeneous photocatalysts based on metal oxides to control the selectivity of chemical reactions. Photocatalysis:185–216

  12. Maeda K (2011) Photocatalytic water splitting using semiconductor particles: history and recent developments. J Photochem Photobiol C: Photochem Rev 12(4):237–268

    CAS  Google Scholar 

  13. Tahir M, Amin NS (2015) Indium-doped TiO2 nanoparticles for photocatalytic CO2 reduction with H2O vapors to CH4. Appl Catal B Environ 162:98–109

    CAS  Google Scholar 

  14. Sun Z, Yan Y, Zhang G, Wu Z, Zheng S (2015) The influence of carriers on the structure and photocatalytic activity of TiO2/diatomite composite photocatalysts. Adv Powder Technol 26(2):595–601

    CAS  Google Scholar 

  15. Zhang G, Sun Z, Duan Y, Ma R, Zheng S (2017) Synthesis of nano-TiO2/diatomite composite and its photocatalytic degradation of gaseous formaldehyde. Appl Surf Sci 412:105–112

    CAS  Google Scholar 

  16. Lin Z, Orlov A, Lambert RM, Payne MC (2005) New insights into the origin of visible light photocatalytic activity of nitrogen-doped and oxygen-deficient anatase TiO2. J Phys Chem B 109(44):20948–20952

    CAS  PubMed  Google Scholar 

  17. Jia Y, Han W, Xiong G, Yang W (2008) Layer-by-layer assembly of TiO2 colloids onto diatomite to build hierarchical porous materials. J Colloid Interface Sci 323(2):326–331

    CAS  PubMed  Google Scholar 

  18. Sun Z, Bai Z, Shen H, Zheng S, Frost RL (2013) Electrical property and characterization of nano-SnO2/wollastonite composite materials. Mater Res Bull 48(3):1013–1019

    CAS  Google Scholar 

  19. Yang S, Liang G, Gu A, Mao H (2013) Synthesis of TiO2 pillared montmorillonite with ordered interlayer mesoporous structure and high photocatalytic activity by an intra-gallery templating method. Mater Res Bull 48(10):3948–3954

    CAS  Google Scholar 

  20. Zhang Y, Wang D, Zhang G (2011) Photocatalytic degradation of organic contaminants by TiO2/sepiolite composites prepared at low temperature. Chem Eng J 173(1):1–10

    CAS  Google Scholar 

  21. Kočí K, Matějka V, Kovář P, Lacný Z, Obalová L (2011) Comparison of the pure TiO2 and kaolinite/TiO2 composite as catalyst for CO2 photocatalytic reduction. Catal Today 161(1):105–109

    Google Scholar 

  22. Martyanov IN, Klabunde KJ (2004) Comparative study of TiO2 particles in powder form and as a thin nanostructured film on quartz. J Catal 225(2):408–416

    CAS  Google Scholar 

  23. Shang J, Li W, Zhu Y (2003) Structure and photocatalytic characteristics of TiO2 film photocatalyst coated on stainless steel webnet. J Mol Catal A Chem 202(1–2):187–195

    CAS  Google Scholar 

  24. Yang HG, Liu G, Qiao SZ, Sun CH, Jin YG, Smith SC, Zou J, Cheng HM, Lu GQ (2009) Solvothermal synthesis and photoreactivity of anatase TiO2 nanosheets with dominant {001} facets. J Am Chem Soc 131(11):4078–4083

    CAS  PubMed  Google Scholar 

  25. Padmanabhan SK, Pal S, Haq EU, Licciulli A (2014) Nanocrystalline TiO2–diatomite composite catalysts: effect of crystallization on the photocatalytic degradation of rhodamine B. Appl Catal A Gen 485:157–162

    CAS  Google Scholar 

  26. Han X, Kuang Q, Jin M, Xie Z, Zheng L (2009) Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties. J Am Chem Soc 131(9):3152–3153

    CAS  PubMed  Google Scholar 

  27. Yu J, Low J, Xiao W, Zhou P, Jaroniec M (2014) Enhanced photocatalytic CO2-reduction activity of anatase TiO2 by coexposed {001} and {101} facets. J Am Chem Soc 136(25):8839–8842

    CAS  PubMed  Google Scholar 

  28. Rossetto E, Beraldin R, Penha FG, Pergher SB (2009) Caracterização de argilas bentonitas e diatomitas e sua aplicação como adsorventes. Química Nova 32(8):2064–2067

    CAS  Google Scholar 

  29. Cherrak R, Hadjel M, Benderdouche N (2015) Heterogenous photocatalysis treatement of azo dye methyl Orange by nano composite TiO2/diatomite. Oriental J Chem 31:1611–1620

    CAS  Google Scholar 

  30. Zhao X, Liu X, Yu M, Wang C, Li J (2017) The highly efficient and stable cu, co, Zn-porphyrin–TiO2 photocatalysts with heterojunction by using fashioned one-step method. Dyes Pigments 136:648–656

    CAS  Google Scholar 

  31. Pierre AC, Pajonk GM (2002) Chemistry of aerogels and their applications. Chem Rev 102(11):4243–4266

    CAS  PubMed  Google Scholar 

  32. Cojocariu AM, Mutin PH, Dumitriu E, Fajula F, Vioux A, Hulea V (2010) Mild oxidation of bulky organic compounds with hydrogen peroxide over mesoporous TiO2-SiO2 xerogels prepared by non-hydrolytic sol–gel. Appl Catal B Environ 97(3–4):407–413

    CAS  Google Scholar 

  33. Mutin PH, Vioux A (2009) Nonhydrolytic processing of oxide-based materials: simple routes to control homogeneity, morphology, and nanostructure. Chem Mater 21(4):582–596

    CAS  Google Scholar 

  34. Mutin PH, Popa AF, Vioux A, Delahay G, Coq B (2006) Nonhydrolytic vanadia-titania xerogels: synthesis, characterization, and behavior in the selective catalytic reduction of NO by NH3. Appl Catal B Environ 69(1–2):49–57

    CAS  Google Scholar 

  35. Xu L, Gao X, Li Z, Gao C (2015) Removal of fluoride by nature diatomite from high-fluorine water: an appropriate pretreatment for nanofiltration process. Desalination 369:97–104

    CAS  Google Scholar 

  36. Ivanov S, Belyakov A (2008) Diatomite and its applications. Glas Ceram 65(1):48–51

    CAS  Google Scholar 

  37. Wang Y, Shang Y, Zhu J, Wu J, Ji S, Meng C (2009) Synthesis of magadiite using a natural diatomite material. J Chem Technol Biotechnol 84(12):1894–1898

    CAS  Google Scholar 

  38. Hadjar H, Hamdi B, Jaber M, Brendlé J, Kessaissia Z, Balard H, Donnet J-B (2008) Elaboration and characterisation of new mesoporous materials from diatomite and charcoal. Microporous Mesoporous Mater 107(3):219–226

    CAS  Google Scholar 

  39. Reza APS, Hasan AM, Ahmad JJ, Zohreh F, Jafar T (2015) The effect of acid and thermal treatment on a natural diatomite. Chemistry Journal 1(4):144–150

    CAS  Google Scholar 

  40. Zuo R, Du G, Zhang W, Liu L, Liu Y, Mei L, Li Z (2014) Photocatalytic degradation of methylene blue using TiO2 impregnated diatomite. Adv Mater Sci Eng 2014

  41. Mokhtar A, Djelad A, Bengueddach A, Sassi M Structural and antibacterial properties of H y Zn x Na 2− x Si 14 O 29 nH 2 O layered silicate compounds, prepared by ion-exchange reaction. J Inorg Organomet Polym Mater:1–10

  42. Benayache S, Alleg S, Mebrek A, Suñol JJ (2018) Thermal and microstructural properties of paraffin/diatomite composite. Vacuum 157:136–144

    CAS  Google Scholar 

  43. Ramazani M, Farahmandjou M, Firoozabadi T (2015) Effect of nitric acid on particle morphology of the nano-TiO2. Int J Nanosci Nanotechnol 11(2):115–122

  44. Luan Y, Jing L, Xie M, Shi X, Fan X, Cao Y, Feng Y (2012) Synthesis of efficient N-containing TiO 2 photocatalysts with high anatase thermal stability and the effects of the nitrogen residue on the photoinduced charge separation. Phys Chem Chem Phys 14(4):1352–1359

    CAS  PubMed  Google Scholar 

  45. Zhu X, Han S, Feng W, Kong Q, Dong Z, Wang C, Lei J, Yi Q (2018) The effect of heat treatment on the anatase–rutile phase transformation and photocatalytic activity of Sn-doped TiO 2 nanomaterials. RSC Adv 8(26):14249–14257

    CAS  Google Scholar 

  46. Lee MS, Lee G-D, Park SS, Hong S-S (2003) Synthesis of TiO2 nanoparticles in reverse microemulsion and their photocatalytic activity. J Ind Eng Chem 9(1):89–95

    CAS  Google Scholar 

  47. Alyosef HA, Ibrahim S, Welscher J, Inayat A, Eilert A, Denecke R, Schwieger W, Münster T, Kloess G, Einicke W-D (2014) Effect of acid treatment on the chemical composition and the structure of Egyptian diatomite. Int J Miner Process 132:17–25

    CAS  Google Scholar 

  48. Wang B, de Godoi FC, Sun Z, Zeng Q, Zheng S, Frost RL (2015) Synthesis, characterization and activity of an immobilized photocatalyst: natural porous diatomite supported titania nanoparticles. J Colloid Interface Sci 438:204–211

    CAS  PubMed  Google Scholar 

  49. Hisaindee S, Meetani M, Rauf M (2013) Application of LC-MS to the analysis of advanced oxidation process (AOP) degradation of dye products and reaction mechanisms. TrAC Trends Anal Chem 49:31–44

    CAS  Google Scholar 

  50. Ju Y, Fang J, Liu X, Xu Z, Ren X, Sun C, Yang S, Ren Q, Ding Y, Yu K (2011) Photodegradation of crystal violet in TiO2 suspensions using UV–vis irradiation from two microwave-powered electrodeless discharge lamps (EDL-2): products, mechanism and feasibility. J Hazard Mater 185(2–3):1489–1498

    CAS  PubMed  Google Scholar 

  51. Liao Y-HB, Wang JX, Lin J-S, Chung W-H, Lin W-Y, Chen C-C (2011) Synthesis, photocatalytic activities and degradation mechanism of Bi2WO6 toward crystal violet dye. Catal Today 174(1):148–159

    CAS  Google Scholar 

  52. Sahoo C, Gupta A, Pal A (2005) Photocatalytic degradation of crystal violet (CI basic violet 3) on silver ion doped TiO2. Dyes Pigments 66(3):189–196

    CAS  Google Scholar 

  53. Chen C-C, Fan H-J, Jang C-Y, Jan J-L, Lin H-D, Lu C-S (2006) Photooxidative N-de-methylation of crystal violet dye in aqueous nano-TiO2 dispersions under visible light irradiation. J Photochem Photobiol A Chem 184(1–2):147–154

    CAS  Google Scholar 

  54. Habib MA, Muslim M, Shahadat MT, Islam MN, Ismail IMI, Islam TSA, Mahmood AJ (2013) Photocatalytic decolorization of crystal violet in aqueous nano-ZnO suspension under visible light irradiation. J Nanostruct Chem 3(1):70

  55. Nezamzadeh-Ejhieh A, Banan Z (2012) Sunlight assisted photodecolorization of crystal violet catalyzed by CdS nanoparticles embedded on zeolite a. Desalination 284:157–166

    CAS  Google Scholar 

  56. Djellabi R, Ghorab M, Cerrato G, Morandi S, Gatto S, Oldani V, Di Michele A, Bianchi C (2014) Photoactive TiO2–montmorillonite composite for degradation of organic dyes in water. J Photochem Photobiol A Chem 295:57–63

    CAS  Google Scholar 

  57. Abdel-Khalek AA, Mahmoud S, Zaki A (2018) Visible light assisted photocatalytic degradation of crystal violet, bromophenol blue and eosin Y dyes using AgBr-ZnO nanocomposite. Environmental Nanotechnology, Monitoring & Management 9:164–173 https://doi.org/10.1016/j.enmm.2018.03.002

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adel Mokhtar.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cherrak, R., Hadjel, M., Benderdouche, N. et al. Preparation of Nano-TiO2/Diatomite Composites by Non-hydrolytic Sol–Gel Process and its Application in Photocatalytic Degradation of Crystal Violet. Silicon 12, 927–935 (2020). https://doi.org/10.1007/s12633-019-00186-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-019-00186-6

Keywords

Navigation