Impact of Si and Mg on Microstructural and Magnetic Behavior of Fe-Co-Ni (Mg-Si)x (x = 0.00,0.1,0.2) Multicomponent Alloys


The multicomponent alloys, namely FeCoNi(Mg-Si)x (x = 0.00,0.1,0.2) were prepared by mechanical alloying (MA) followed by conventional sintering at 900 °C. The impact of magnesium (Mg) and silicon (Si) on the microstructure and magnetic properties of the FeCoNi(Mg-Si)x alloys were examined by a systematic investigation of the phase, microstructure, mechanical and magnetic properties. It was found that the higher molar ratio of Si and Mg content gives rise to the formation of oxides in greater extent in case of FeCoNi(Mg-Si)0.0 and FeCoNi(Mg-Si)0.1 alloys. Surface morphology of the multicomponent alloys consists of a well-separated FCC (grey), intermetallic (dark grey) and oxides (black) regions. The Vickers hardness has an approximately linear gain with Si and Mg content. The prepared samples show ferromagnetic nature and the value of maximum saturation magnetization (Ms) of 142.43 emu/g and considerably low Hc of 30.29 Oe was found to be in case of FeCoNi(Mg-Si)0.1 alloy. The correlation between the structural evolution and magnetic properties of multicomponent alloys has been discussed in detail.

This is a preview of subscription content, log in to check access.


  1. 1.

    Cantor B, Chang ITH, Knight P, Vincent AJB (2004) Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng A 375:213–218

    Google Scholar 

  2. 2.

    Yeh JW, Chen SK, Lin SJ, Gan JY, Chin TS, Shun TT, Chang SY (2004) Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater 6(5):299–303

    CAS  Google Scholar 

  3. 3.

    Jien-Wei YEH (2006) Recent progress in high entropy alloys. Ann Chim Sci Mater 31(6):633–648

    Google Scholar 

  4. 4.

    Miracle DB, Senkov ON (2017) A critical review of high entropy alloys and related concepts. Acta Mater 122:448–511

    CAS  Google Scholar 

  5. 5.

    Chen S, Yang X, Dahmen K, Liaw P, Zhang Y (2014) Microstructures and crackling noise of AlxNbTiMoV high entropy alloys. Entropy 16(2):870–884

    Google Scholar 

  6. 6.

    Sheng GUO, Liu CT (2011) Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase. Prog Nat Sci Mater Int 21(6):433–446

    Google Scholar 

  7. 7.

    Tsai MH, Yeh JW (2014) High-entropy alloys: a critical review. Mater Res Lett 2(3):107–123

    Google Scholar 

  8. 8.

    Osaka T, Takai M, Hayashi K, Ohashi K, Saito M, Yamada K (1998) A soft magnetic CoNiFe film with high saturation magnetic flux density and low coercivity. Nature 392(6678):796–798

    CAS  Google Scholar 

  9. 9.

    Gómez-Esparza CD, Baldenebro-López FJ, Santillán-Rodríguez CR, Estrada-Guel I, Matutes-Aquino JA, Herrera-Ramírez JM, Martínez-Sánchez R (2014) Microstructural and magnetic behavior of an equiatomic NiCoAlFe alloy prepared by mechanical alloying. J Alloys Compd 615:S317–S323

    Google Scholar 

  10. 10.

    Ma SG, Zhang Y (2012) Effect of Nb addition on the microstructure and properties of AlCoCrFeNi high-entropy alloy. Mater Sci Eng A 532:480–486

    CAS  Google Scholar 

  11. 11.

    Guo S, Ng C, Wang Z, Liu CT (2014) Solid solutioning in equiatomic alloys: limit set by topological instability. J Alloys Compd 583:410–413

    CAS  Google Scholar 

  12. 12.

    Ye GX, Wu B, Zhang CH, Chen T, Lin MH, Xie YJ, ... & Wang C (2012) Study of solidification microstructures of multi-principal high-entropy alloy FeCoNiCrMn by using experiments and simulation. Adv Mater Res, 399: 1746–1749

  13. 13.

    Maulik O, Kumar V (2015) Synthesis of AlFeCuCrMgx (x = 0, 0.5, 1, 1.7) alloy powders by mechanical alloying. Mater Charact 110:116–125

    CAS  Google Scholar 

  14. 14.

    Praveen S, Murty BS, Kottada RS (2012) Alloying behavior in multi-component AlCoCrCuFe and NiCoCrCuFe high entropy alloys. Mater Sci Eng A 534:83–89

    CAS  Google Scholar 

  15. 15.

    Fu Z, Chen W, Xiao H, Zhou L, Zhu D, Yang S (2013) Fabrication and properties of nanocrystalline Co0.5FeNiCrTi0.5 high entropy alloy by MA–SPS technique. Mater Des 44:535–539

    CAS  Google Scholar 

  16. 16.

    Yuhu F, Yunpeng Z, Hongyan G, Huimin S, Li H (2013) AlNiCrFexMo0.2CoCu high entropy alloys prepared by powder metallurgy. Rare Metal Mater Eng 42(6):1127–1129

    Google Scholar 

  17. 17.

    Ji W, Wang W, Wang H, Zhang J, Wang Y, Zhang F, Fu Z (2015) Alloying behavior and novel properties of CoCrFeNiMn high-entropy alloy fabricated by mechanical alloying and spark plasma sintering. Intermetallics 56:24–27

    CAS  Google Scholar 

  18. 18.

    Varalakshmi S, Kamaraj M, Murty BS (2008) Synthesis and characterization of nanocrystalline AlFeTiCrZnCu high entropy solid solution by mechanical alloying. J Alloys Compd 460(1–2):253–257

    CAS  Google Scholar 

  19. 19.

    Sriharitha R, Murty BS, Kottada RS (2013) Phase formation in mechanically alloyed AlxCoCrCuFeNi (x = 0.45,1, 2.5, 5 Mol) high entropy alloys. Intermetallics 32:119–126

    CAS  Google Scholar 

  20. 20.

    Qiu XW (2013) Microstructure and properties of AlCrFeNiCoCu high entropy alloy prepared by powder metallurgy. J Alloys Compd 555:246–249

    CAS  Google Scholar 

  21. 21.

    Praveen S, Basu J, Kashyap S, Kottada RS (2016) Exceptional resistance to grain growth in nanocrystalline CoCrFeNi high entropy alloy at high homologous temperatures. J Alloys Compd 662:361–367

    CAS  Google Scholar 

  22. 22.

    Mane RB, Panigrahi BB (2018) Sintering mechanism of CoCrFeMnNi high-entropy alloy powders. Powder Metall 61(2):131–138

    CAS  Google Scholar 

  23. 23.

    German RM (1984) Powder metallurgy science. Metal Powder Industries Federation, Princeton

    Google Scholar 

  24. 24.

    Schaffer JP, Saxena A, Antolovich SD, Sanders TH, Warner SB (1995) The science and design of engineering materials. Irwin, Chicago, p 577

    Google Scholar 

  25. 25.

    Gupta M, Wong WLE (2005) Enhancing overall mechanical performance of metallic materials using two-directional microwave assisted rapid sintering. Scr Mater 52(6):479–483

    CAS  Google Scholar 

  26. 26.

    An Z, Jia H, Wu Y, Rack PD, Patchen AD, Liu Y, Liaw PK (2015) Solid-solution CrCoCuFeNi high-entropy alloy thin films synthesized by sputter deposition. Mater Res Lett 3(4):203–209

    CAS  Google Scholar 

  27. 27.

    Park N, Watanabe I, Terada D, Yokoyama Y, Liaw PK, Tsuji N (2015) Recrystallization behavior of CoCrCuFeNi high-entropy alloy. Metall Mater Trans A 46(4):1481–1487

    CAS  Google Scholar 

  28. 28.

    Santodonato LJ, Zhang Y, Feygenson M, Parish CM, Gao MC, Weber RJ, Liaw PK (2015) Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy. Nat Commun 6:5964

    PubMed  Google Scholar 

  29. 29.

    Ren B, Liu ZX, Li DM, Shi L, Cai B, Wang MX (2010) Effect of elemental interaction on microstructure of CuCrFeNiMn high entropy alloy system. J Alloys Compd 493(1–2):148–153

    CAS  Google Scholar 

  30. 30.

    Cheng KC, Chen JH, Stadler S, Chen SH (2019) Properties of atomized AlCoCrFeNi high-entropy alloy powders and their phase-adjustable coatings prepared via plasma spray process. Appl Surf Sci 478:478–486

    CAS  Google Scholar 

  31. 31.

    Ferrari V, Wolf W, Zepon G, Coury FG, Kaufman MJ, Bolfarini C, Botta WJ (2019) Effect of boron addition on the solidification sequence and microstructure of AlCoCrFeNi alloys. J Alloys Compd 775:1235–1243

    CAS  Google Scholar 

  32. 32.

    Liu Y, Chen J, Li Z, Wang X, Fan X, Liu J (2019) Formation of transition layer and its effect on mechanical properties of AlCoCrFeNi high-entropy alloy/Al composites. J Alloys Compd 780:558–564

    CAS  Google Scholar 

  33. 33.

    Lee KS, Kang JH, Lim KR, Na YS (2017) Influence of compressive strain on the microstructural evolution of an AlCoCrFeNi high entropy alloy. Mater Charact 132:162–168

    CAS  Google Scholar 

  34. 34.

    Wu Z, Bei H, Otto F, Pharr GM, George EP (2014) Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys. Intermetallics 46:131–140

    CAS  Google Scholar 

  35. 35.

    Wang WR, Wang WL, Yeh JW (2014) Phases, microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloys at elevated temperatures. J Alloys Compd 589:143–152

    CAS  Google Scholar 

  36. 36.

    Roy U, Roy H, Daoud H, Glatzel U, Ray KK (2014) Fracture toughness and fracture micromechanism in a cast AlCoCrCuFeNi high entropy alloy system. Mater Lett 132:186–189

    CAS  Google Scholar 

  37. 37.

    Zuo TT, Li RB, Ren XJ, Zhang Y (2014) Effects of Al and Si addition on the structure and properties of CoFeNi equal atomic ratio alloy. J Magn Magn Mater 371:60–68

    CAS  Google Scholar 

  38. 38.

    Zhang Y, Zuo T, Cheng Y, Liaw PK (2013) High-entropy alloys with high saturation magnetization, electrical resistivity, and malleability. Sci Rep 3:1455

    PubMed  PubMed Central  Google Scholar 

  39. 39.

    Lucas MS, Mauger L, Munoz JA, Xiao Y, Sheets AO, Semiatin SL, Turgut Z (2011) Magnetic and vibrational properties of high-entropy alloys. J Appl Phys 109(7):07E307

    Google Scholar 

  40. 40.

    Singh S, Wanderka N, Kiefer K, Siemensmeyer K, Banhart J (2011) Effect of decomposition of the Cr–Fe–co rich phase of AlCoCrCuFeNi high entropy alloy on magnetic properties. Ultramicroscopy 111(6):619–622

    CAS  PubMed  Google Scholar 

  41. 41.

    Huang S, Li W, Li X, Schönecker S, Bergqvist L, Holmström E, Vitos L (2016) Mechanism of magnetic transition in FeCrCoNi-based high entropy alloys. Mater Des 103:71–74

    CAS  Google Scholar 

  42. 42.

    Zuo T, Zhang M, Liaw PK, Zhang Y (2018) Novel high entropy alloys of Fex Co1-xNiMnGa with excellent soft magnetic properties. Intermetallics 100:1–8

    CAS  Google Scholar 

  43. 43.

    Wang J, Zheng Z, Xu J, Wang Y (2014) Microstructure and magnetic properties of mechanically alloyed FeSiBAlNi(Nb) high entropy alloys. J Magn Magn Mater 355:58–64

    CAS  Google Scholar 

  44. 44.

    Tariq NH, Naeem M, Hasan BA, Akhter JI, Siddique M (2013) Effect of W and Zr on structural, thermal and magnetic properties of AlCoCrCuFeNi high entropy alloy. J Alloys Compd 556:79–85

    CAS  Google Scholar 

  45. 45.

    Prasad NK, Kumar V (2016) Structure–magnetic properties correlation in mechanically alloyed nanocrystalline Fe–co–Ni–(mg–Si)x alloy powders. J Mater Sci Mater Electron 27(10):10136–10146

    CAS  Google Scholar 

  46. 46.

    Sahu P, Solanki S, Dewangan S, Kumar V (2019) Microstructure and magnetic behavior of FeCoNi (Mn–Si) x (x = 0.5, 0.75, 1.0) high-entropy alloys. J Mater Res 34(5):829–840

    CAS  Google Scholar 

  47. 47.

    Zhuang YX, Xue HD, Chen ZY, Hu ZY, He JC (2013) Effect of annealing treatment on microstructures and mechanical properties of FeCoNiCuAl high entropy alloys. Mater Sci Eng A 572:30–35

    CAS  Google Scholar 

  48. 48.

    Mishra RK, Shahi RR (2018) Effect of annealing conditions and temperatures on phase formation and magnetic behaviour of CrFeMnNiTi high entropy alloy. J Magn Magn Mater 465:169–175

    CAS  Google Scholar 

  49. 49.

    Prasad NK, Kumar V (2015) Microstructure and magnetic properties of equiatomicFeNiCo alloy synthesized by mechanical alloying. J Mater Sci Mater Electron 26(12):10109–10118

    CAS  Google Scholar 

  50. 50.

    Kumar V, Shekhar R, Balasubramaniam R, Balani K (2012) Microstructure evolution and texture development in thermomechanically processed mg–Li–Al based alloys. Mater Sci Eng A 547:38–50

    CAS  Google Scholar 

  51. 51.

    Yousefi M, Sharafi S, Mehrolhosseiny A (2014) Correlation between structural parameters and magnetic properties of ball milled nano-crystalline Fe–co–Si powders. Adv Powder Technol 25(2):752–760

    CAS  Google Scholar 

  52. 52.

    Williamson GK, Hall WH (1953) X-ray line broadening from filed aluminium and wolfram. Acta Metall 1(1):22–31

    CAS  Google Scholar 

  53. 53.

    Cullity BD (1978) Elements of X-ray diffraction. Addison, Wesley

    Google Scholar 

  54. 54.

    Baghbaderani HA, Sharafi S, Chermahini MD (2012) Investigation of nanostructure formation mechanism and magnetic properties in Fe45Co45Ni10 system synthesized by mechanical alloying. Powder Technol 230:241–246

    Google Scholar 

  55. 55.

    Khajepour M, Sharafi S (2012) Characterization of nanostructured Fe–co–Si powder alloy. Powder Technol 232:124–133

    CAS  Google Scholar 

  56. 56.

    Makino A, Inoue A, Masumoto T (1995) Nanocrystalline soft magnetic Fe–M–B (M=Zr,Hf,Nb) alloys produced by crystallization of amorphous phase (overview). Mater Trans, JIM 36(7):924–938

    CAS  Google Scholar 

  57. 57.

    Khodabakhshi F, Haghshenas M, Eskandari H, Koohbor B (2015) Hardness− strength relationships in fine and ultra-fine-grained metals processed through constrained groove pressing. Mater Sci Eng A 636:331–339

    CAS  Google Scholar 

  58. 58.

    Khanchandani H, Sharma P, Kumar R, Maulik O, Kumar V (2016) Effect of sintering on phase evolution in AlMgFeCuCrNi4. 75 high entropy alloy. Adv Powder Technol 27(1):289–294

    CAS  Google Scholar 

  59. 59.

    Sriraman KR, Raman SGS, & Seshadri SK (2007) Influence of crystallite size on the hardness and fatigue life of steel samples coated with electrodeposited nanocrystalline Ni–W alloys. Materials Letters 61(3):715–718.

  60. 60.

    Herzer G (1990) Grain size dependence of coercivity and permeability in nanocrystalline ferromagnets. IEEE Trans Magn 26(5):1397–1402

    CAS  Google Scholar 

  61. 61.

    Herzer G (1992) Nanocrystalline soft magnetic materials. J Magn Magn Mater 112(1–3):258–262

    CAS  Google Scholar 

  62. 62.

    Razi M, Ghasemi A, Borhani GH (2014) Microstructural and magnetic properties of nanostructured Fe65Co35 powders prepared by mechanical alloying. Adv Mater Res 829:778–783

    Google Scholar 

Download references


VK thanks Board of Research in nuclear Science (BRNS) project no. 34/20/01/2014-BRNS-0339, Mumbai, India for financial support.

Author information



Corresponding author

Correspondence to Vinod Kumar.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sahu, P., Bagri, A.S., Anoop, M.D. et al. Impact of Si and Mg on Microstructural and Magnetic Behavior of Fe-Co-Ni (Mg-Si)x (x = 0.00,0.1,0.2) Multicomponent Alloys. Silicon 12, 893–902 (2020).

Download citation


  • Sintering
  • Mechanical alloying
  • Multicomponent alloys
  • Microstructure
  • Magnetic properties