Skip to main content
Log in

Electrical and Photoresponse Properties of Al/p-Si/Y1-xSrxMnO3/Al Heterojunction Photodiodes

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The electrical and photoresponse properties of Al/p-Si/Y1-xSrxMnO3/Al diodes were investigated by using current-voltage and transient photocurrent measurements. The average ideality factor and barrier height has been calculated as 4.2568 and 0.613 eV respectively. The calculated ideality factor for Al/p-Si/Y1-xSrxMnO3/Al diodes is higher than unity because of the interface states, native oxide layer and series resistance. Also, diodes have exhibited property of photosensitivity. These indicated that the fabrication of diodes can be used optoelectronic device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tanguturi RG, Bora T, Ravi S, Pamu D (2014) Structural, optical and magnetic properties of Nd0.7Sr0.3MnO3 thin films. Phys Procedia 54:70–74

    Google Scholar 

  2. Suzuki T, Jasinski P, Petrovsky V, Zhou X, Anderson HU (2003) Optical and electrical properties of Pr0.8Sr0.2MnO3 thin films. J Appl Phys 93:6223–6228

    CAS  Google Scholar 

  3. Altındal S (2015) On the origin of increase in the barrier height and decrease in ideality factor with increase temperature in Ag/SiO2/p-Si (MIS) Schottky barrier diodes (SBDs). J Mater Electron Device 1:42–47

  4. Cifci OS, Kocyigit A, Sun P (2018) Perovskite/p-Si photodiode with ultra-thin metal cathode. Superlattice Microst 120:519–522

    Google Scholar 

  5. Prabhu RR, Saritha A, Shijeesh M, Jayaraj M (2017) Fabrication of p-CuO/n-ZnO heterojunction diode via sol-gel spin coating technique. Mater Sci Eng B 220:82–90

    CAS  Google Scholar 

  6. Khusayfan NM (2016) Electrical and photoresponse properties of Al/graphene oxide doped NiO nanocomposite/p-Si/Al photodiodes. J Alloys Compd 666:501–506

    CAS  Google Scholar 

  7. Karabulut A, Orak İ, Türüt A (2018) The photovoltaic impact of atomic layer deposited TiO2 interfacial layer on Si-based photodiodes. Solid State Electron 144:39–48

    CAS  Google Scholar 

  8. Yakuphanoglu F, Farooq WA (2011) Photoresponse and electrical characterization of photodiode based nanofibers ZnO and Si. Mater Sci Semicond Process 14(3–4):207–211

    CAS  Google Scholar 

  9. Yu T, Wang F, Xu Y, Ma L, Pi X, Yang D (2016) Graphene coupled with silicon quantum dots for high-performance bulk-silicon-based Schottky-junction photodetectors. Adv Mater 28:4912–4919

    CAS  PubMed  Google Scholar 

  10. Saidaminov MI, Adinolfi V, Comin R, Abdelhady AL, Peng W, Dursun I, Yuan M, Hoogland S, Sargent EH, Bakr OM (2015) Planar-integrated single-crystalline perovskite photodetectors. Nat Commun 6:8724

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Cho H, Jeong S-H, Park M-H, Kim Y-H, Wolf C, Lee C-L, Heo JH, Sadhanala A, Myoung N, Yoo S (2015) Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science 350(6265):1222–1225

    CAS  PubMed  Google Scholar 

  12. Yan J, Ke X, Chen Y, Zhang A, Zhang B (2015) Effect of modulating the molar ratio of organic to inorganic content on morphology, optical absorption and photoluminescence of perovskite CH3 NH3 PbBr3 films. Appl Surf Sci 351:1191–1196

    CAS  Google Scholar 

  13. Wang JT-W, Ball JM, Barea EM, Abate A, Alexander-Webber JA, Huang J, Saliba M, Mora-Sero I, Bisquert J, Snaith HJ (2013) Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells. Nano Lett 14(2):724–730

    PubMed  Google Scholar 

  14. Huang T-J, Huang Y-S (2003) Electrical conductivity and YSZ reactivity of Y1− xSrxMnO3 as SOFC cathode material. Mater Sci Eng B 103(3):207–212

    Google Scholar 

  15. Huang C-Y, Huang T-J (2002) Effect of Co substitution for Mn on Y1−xSrxMnO3 properties for SOFC cathode material. J Mater Sci 37(21):4581–4587

    CAS  Google Scholar 

  16. Choudhary I (2017) Flexible substrate compatible solution processed PN heterojunction diodes with indium-gallium-zinc oxide and copper oxide. Mater Sci Eng B 218:64–73

    CAS  Google Scholar 

  17. Ilican S, Gorgun K, Aksoy S, Caglar Y, Caglar M (2018) Fabrication of p-Si/n-ZnO: Al heterojunction diode and determination of electrical parameters. J Mol Struct 1156:675–683

    CAS  Google Scholar 

  18. Sharma SK, Singh SP, Kim DY (2018) Fabrication of the heterojunction diode from Y-doped ZnO thin films on p-Si substrates by sol-gel method. Solid State Commun 270:124–129

    CAS  Google Scholar 

  19. Gupta R, Yakuphanoglu F (2012) Photoconductive Schottky diode based on Al/p-Si/SnS2/Ag for optical sensor applications. Sol Energy 86(5):1539–1545

    CAS  Google Scholar 

  20. Ocaya R, Dere A, Tuncer H, Al-Ghamdi AA, Sari DC, Yakuphanoglu F (2015) Graphene-oxide doped 2.9.16.23-tetrakis-4-{4-[(2E)-3-(naphthalen-1-yl) prop-2-enoyl] phenoxy}-phthalocyaninato cobalt (II)/Au photodiodes. Synth Met 209:164–172

    CAS  Google Scholar 

  21. Ocaya R, Al-Sehemi AG, Al-Ghamdi A, El-Tantawy F, Yakuphanoglu F (2017) Organic semiconductor photosensors. J Alloys Compd 702:520–530

    CAS  Google Scholar 

  22. Phan D-T, Gupta R, Chung G-S, Al-Ghamdi A, Al-Hartomy OA, El-Tantawy F, Yakuphanoglu F (2012) Photodiodes based on graphene oxide–silicon junctions. Sol Energy 86(10):2961–2966

    CAS  Google Scholar 

  23. Karataş Ş, Türüt A (2006) Electrical properties of Sn/p-Si (MS) Schottky barrier diodes to be exposed to 60 Co γ-ray source. Nucl Instrum Methods Phys Res Sect A 566(2):584–589

    Google Scholar 

  24. Sze SM, Ng KK (2006) Physics of semiconductor devices. Wiley, New York

    Google Scholar 

  25. An Y, Behnam A, Pop E, Bosman G, Ural A (2015) Forward-bias diode parameters, electronic noise, and photoresponse of graphene/silicon Schottky junctions with an interfacial native oxide layer. J Appl Phys 118(11):114307

    Google Scholar 

  26. Gupta R, Yakuphanoglu F, Hasar H, Al-Khedhairy AA (2011) p-Si/DNA photoconductive diode for optical sensor applications. Synth Met 161(17–18):2011–2016

    CAS  Google Scholar 

  27. Yakuphanoglu F (2008) Photovoltaic properties of the organic–inorganic photodiode based onpolymer and fullerene blend for optical sensors. Sensors Actuators A 141:383–389

    CAS  Google Scholar 

  28. Chang C-H, Hsu C-J, Wu C-C (2017) Rectified Schottky diodes based on PEDOT: PSS/InGaZnO junctions. Org Electron 48:35–40

    CAS  Google Scholar 

  29. Kim J-W, Jung T-J, Yoon S-M (2019) Device characteristics of Schottky barrier diodes using In-Ga-Zn-O semiconductor thin films with different atomic ratios. J Alloys Compd 771:658–663

    CAS  Google Scholar 

  30. Yakuphanoglu F (2011) Nanostructure Cu2ZnSnS4 thin film prepared by sol–gel for optoelectronic applications. Sol Energy 85:2518–2523

    CAS  Google Scholar 

  31. Pandey BK, Shahi AK, Gopal R Synthesis, optical properties and growth mechanism of MnO nano structures. Appl Surf Sci 283:430–437

    CAS  Google Scholar 

  32. Milnes AG, Feucht DL (1972) Heterojunctions and metal semiconductor junctions. Elsevier, Academic press, London

    Google Scholar 

  33. Gautam SK, Das A, Singh RG, Kumar VVS, Singh F (2016) Carrier transport mechanism of highly-sensitive niobium doped titanium dioxide/p-Si heterojunction photodiode under illuminations by solar simulated light. J Appl Phys 120:214502

    Google Scholar 

  34. Tombak A, Ocak YS, Asubay S, Kilicoglu T, Ozkahraman F (2014) Fabrication and electrical properties of an organic–inorganic device based on Coumarin 30 dye. Mater Sci Semicond Process 24:187–192

    CAS  Google Scholar 

  35. Özdemir AF, Gök A, Türüt A (2007) The electrical measurements in poly (2-chloroaniline) based thin film sandwich devices. Thin Solid Films 515(18):7253–7258

    Google Scholar 

  36. Nicollian EH, Brews JR, Nicollian EH (1982) MOS (metal oxide semiconductor) physics and technology. Wiley, New York

    Google Scholar 

  37. Nicollian E, Goetzberger A (1967) The Si-SiO2 Interface—electrical properties as determined by the metal-insulator-silicon conductance technique. Bell Syst Tech J 46(6):1055–1133

    CAS  Google Scholar 

  38. Gunduz B, Al-Ghamdi AA, Hendi A, Gafer ZH, El-Gazzar S, El-Tantawy F, Yakuphanoglu F (2013) New Schottky diode based entirely on nickel aluminate spinel/p-silicon using the sol–gel spin coating approach. Superlattice Microst 64:167–177

    CAS  Google Scholar 

  39. Karataş Ş, Türüt A (2004) The determination of interface state energy distribution of the H-terminated Zn/p-type Si Schottky diodes with high series resistance by the admittance spectroscopy. Vacuum 74(1):45–53

    Google Scholar 

  40. Korolev N, Nikitenko V (2017) Initial transient photocurrent as a result of polarization of geminate pairs in organics with donor-acceptor bulk heterojunction. Chem Phys 491:69–73

    CAS  Google Scholar 

  41. Dahlan AS, Tataroğlu A, Al-Ghamdi AA, Al-Ghamdi AA, Bin-Omran S, Al-Turki Y, El-Tantawy F, Yakuphanoglu F (2015) Photodiode and photocapacitor properties of Au/CdTe/p-Si/Al device. J Alloys Compd 646:1151–1156

    CAS  Google Scholar 

  42. Hendi A, Yakuphanoglu F (2016) Graphene doped TiO2/p-silicon heterojunction photodiode. J Alloys Compd 665:418–427

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mesut Yalcin.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozmen, D., Yalcin, M. & Yakuphanoglu, F. Electrical and Photoresponse Properties of Al/p-Si/Y1-xSrxMnO3/Al Heterojunction Photodiodes. Silicon 12, 883–891 (2020). https://doi.org/10.1007/s12633-019-00177-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-019-00177-7

Keywords

Navigation