Skip to main content

Advertisement

Log in

Extraction and Characterization of Carbon from Bio Waste

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

This study is an effort to utilize agricultural biomass rice husk for useful applications. The biomass has been milled and then pyrolysed at three different temperatures (800, 900 and 1000 °C). TGA analyses performed on the samples prove the presence of lignocellulosic materials that suggests dissociation of higher molecular weight compounds to low molecular weights, on slow heating under inert conditions. Further, the XRD analyses suggest the presence of amorphous silica and carbon in all the samples. However, the morphological results of biochars have shown tar formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. http://www.fao.org/fileadmin/templates/est/COMM_MARKETS_MONITORING/Rice/images/RMM/RMM_APR16.pdf. Accessed Jan 2018

  2. http://www.fao.org/fileadmin/templates/est/COMM_MARKETS_MONITORING/Rice/Images/RMM/RMM_APR17_H.pdf. Accessed Jan 2018

  3. Della VP, Kühn I, Hotza D (2002) Rice husk ash as an alternate source for active silica production. Mater Lett 57(4):818–821

    Article  CAS  Google Scholar 

  4. Muniandy L, Adam F, Mohamed AR, Ng EP (2014) The synthesis and characterization of high purity mixed microporous/mesoporous activated carbon from rice husk using chemical activation with NaOH and KOH. Microporous Mesoporous Mater 197:316–323

    Article  CAS  Google Scholar 

  5. Guo Y, Yang S, Yu K, Zhao J, Wang Z, Xu H (2002) The preparation and mechanism studies of rice husk based porous carbon. Mater Chem Phys 74(3):320–323

    Article  CAS  Google Scholar 

  6. Mansaray KG, Ghaly AE (1997) Physical and thermochemical properties of rice husk. Energy Sources 19(9):989–1004

    Article  CAS  Google Scholar 

  7. Fu P, Hu S, Xiang J, Yi W, Bai X, Sun L, Su S (2012) Evolution of char structure during steam gasification of the chars produced from rapid pyrolysis of rice husk. Bioresour Technol 114:691–697

    Article  CAS  Google Scholar 

  8. Shackley S, Carter S, Knowles T, Middelink E, Haefele S, Sohi S, Cross A, Haszeldine S (2012) Sustainable gasification–biochar systems? A case-study of rice-husk gasification in Cambodia, part I: context, chemical properties, environmental and health and safety issues. Energy Policy 42:49–58

    Article  CAS  Google Scholar 

  9. Yalçın N, Sevinc V (2000) Studies of the surface area and porosity of activated carbons prepared from rice husks. Carbon 38(14):1943–1945

    Article  Google Scholar 

  10. Liu Y, Guo Y, Gao W, Wang Z, Ma Y, Wang Z (2012) Simultaneous preparation of silica and activated carbon from rice husk ash. J Clean Prod 32:204–209

    Article  CAS  Google Scholar 

  11. Teo EYL, Muniandy L, Ng EP, Adam F, Mohamed AR, Jose R, Chong KF (2016) High surface area activated carbon from rice husk as a high performance supercapacitor electrode. Electrochim Acta 192:110–119

    Article  CAS  Google Scholar 

  12. Zhu C, Duan Y, Wu CY, Zhou Q, She M, Yao T, Zhang J (2016) Mercury removal and synergistic capture of SO 2/NO by ammonium halides modified rice husk char. Fuel 172:160–169

    Article  CAS  Google Scholar 

  13. Leng L, Yuan X, Zeng G, Shao J, Chen X, Wu Z, Peng X (2015) Surface characterization of rice husk bio-char produced by liquefaction and application for cationic dye (Malachite green) adsorption. Fuel 155:77–85

    Article  CAS  Google Scholar 

  14. Kumagai S, Sato M, Tashima D (2013) Electrical double-layer capacitance of micro-and mesoporous activated carbon prepared from rice husk and beet sugar. Electrochim Acta 114:617–626

    Article  CAS  Google Scholar 

  15. Hegazi HA (2013) Removal of heavy metals from wastewater using agricultural and industrial wastes as adsorbents. HBRC Journal 9(3):276–282

    Article  Google Scholar 

  16. Kumagai S, Shimizu Y, Toida Y, Enda Y (2009) Removal of dibenzothiophenes in kerosene by adsorption on rice husk activated carbon. Fuel 88(10):1975–1982

    Article  CAS  Google Scholar 

  17. Nakbanpote W, Thiravetyan P, Kalambaheti C (2002) Comparison of gold adsorption by Chlorella vulgaris, rice husk and activated carbon. Miner Eng 15(7):549–552

    Article  CAS  Google Scholar 

  18. Liou TH, Chang FW, Lo JJ (1997) Pyrolysis kinetics of acid-leached rice husk. Ind Eng Chem Res 36(3):568–573

    Article  CAS  Google Scholar 

  19. Kumar AK, Sharma S (2017) Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresour Bioprocess 4(1):7

    Article  Google Scholar 

  20. Regmi P, Moscoso JLG, Kumar S, Cao X, Mao J, Schafran G (2012) Removal of copper and cadmium from aqueous solution using switchgrass biochar produced via hydrothermal carbonization process. J Environ Manag 109:61–69

    Article  CAS  Google Scholar 

  21. Mor S, Manchanda CK, Kansal SK, Ravindra K (2017) Nanosilica extraction from processed agricultural residue using green technology. J Clean Prod 143:1284–1290

    Article  CAS  Google Scholar 

  22. Tran VT, Nguyen DT, Ho VTT, Hoang PQH, Bui PQ, Bach LG (2017) Efficient removal of Ni 2 ions from aqueous solution using activated carbons fabricated from rice straw and tea waste. J Mater 8(2):426–437

    CAS  Google Scholar 

  23. Mansaray KG, Ghaly AE (1998) Thermal degradation of rice husks in nitrogen atmosphere. Bioresour Technol 65(1–2):13–20

    Article  CAS  Google Scholar 

  24. Jönsson LJ, Martín C (2016) Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresour Technol 199:103–112

    Article  Google Scholar 

  25. Nandiyanto AB, Putra ZA, Andika R, Bilad MR, Kurniawan T, Zulhijah R, Hamidah I (2017) Porous activated carbon particles from rice straw waste and their adsorption properties. J Eng Sci Technol 12:1–11

    Google Scholar 

  26. Parshetti GK, Hoekman SK, Balasubramanian R (2013) Chemical, structural and combustion characteristics of carbonaceous products obtained by hydrothermal carbonization of palm empty fruit bunch. Bioresour Technol 135:683–689

    Article  CAS  Google Scholar 

  27. Sugashini S, Begum KMMS (2015) Preparation of activated carbon from carbonized rice husk by ozone activation for Cr (VI) removal. New Carbon Mater 30(3):252–261

    Article  CAS  Google Scholar 

  28. Hasani TJA, Mihsen HH, Hello KM, Adam F (2017) Catalytic esterification via silica immobilized p-phenylenediamine and dithiooxamide solid catalysts. Arab J Chem 10:S1492–S1500

    Article  Google Scholar 

  29. Mihsen HH, Sobh HS (2018) Preparation and characterization of Thiourea-silica hybrid as heterogeneous catalyst. Asian J Chem 30(5):937–943

    Article  CAS  Google Scholar 

  30. Hello KM, Mihsen HH, Mosa MJ, Magtoof MS (2015) Hydrolysis of cellulose over silica-salicylaldehyde phenylhydrazone catalyst. J Taiwan Inst Chem Eng 46:74–81

    Article  CAS  Google Scholar 

  31. Amalraj A, Pius A (2017) Removal of fluoride from drinking water using aluminum hydroxide coated activated carbon prepared from bark of Morinda tinctoria. Appl Water Sci 7(6):2653–2665

    Article  CAS  Google Scholar 

  32. Rosa SM, Rehman N, de Miranda MIG, Nachtigall SM, Bica CI (2012) Chlorine-free extraction of cellulose from rice husk and whisker isolation. Carbohydr Polym 87(2):1131–1138

    Article  CAS  Google Scholar 

  33. Daifullah AAM, Girgis BS, Gad HMH (2003) Utilization of agro-residues (rice husk) in small waste water treatment plans. Mater Lett 57(11):1723–1731

    Article  CAS  Google Scholar 

  34. An D, Guo Y, Zhu Y, Wang Z (2010) A green route to preparation of silica powders with rice husk ash and waste gas. Chem Eng J 162(2):509–514

    Article  CAS  Google Scholar 

  35. Srivastava VC, Mall ID, Mishra IM (2006) Characterization of mesoporous rice husk ash (RHA) and adsorption kinetics of metal ions from aqueous solution onto RHA. J Hazard Mater 134(1–3):257–267

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raghavendra Gujjala.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ojha, S., Anjali, A. & Gujjala, R. Extraction and Characterization of Carbon from Bio Waste. Silicon 12, 779–787 (2020). https://doi.org/10.1007/s12633-019-00165-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-019-00165-x

Keywords

Navigation