Skip to main content
Log in

Study of Structural, Electronic and Vibrational Properties of Porous Silicon with Different Porosity

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

A Correction to this article was published on 04 July 2019

This article has been updated

Abstract

In this work, density functional theory (DFT) was utilized to study the influence of the porosity on the structural, electronic and vibrational properties of porous silicon (PS). It is based on the potential plane wave (PP-PW) method within generalized gradient approximation (GGA). Supercell model was used to simulate nanopores structures. The results obtained from the formation energy calculation exhibited that the most stable structure corresponds to the highest porosity (40.62%). Moreover, a direct band gap is calculated for all porosities and enlargement of energy gap with porosity was observed. The obtained IR spectra calculation show a resemblance between 15.62 and 40.62% porosities and 3.12 and 28.12% porosities. In order to confirm the theoretical results, we prepared porous silicon specimens by electrochemical etching of (001) p-type silicon wafer (1–10 Ohm cm resistivity). In addition, the IR spectra of PS layers were measured and compared against the calculated spectra. IR absorbance spectrum obtained for a porosity of 40.62% shows great agreement with the experimental one and confirms that the surface is hydrogenated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 04 July 2019

    The original version of the article unfortunately contained an error.

  • 04 July 2019

    The original version of the article unfortunately contained an error.

References

  1. Turner DS (1958) Electropolishing silicon in hydrofluoric acid solutions. J Electrochem Soc 105(1):402–408

    Article  CAS  Google Scholar 

  2. Lowell S, Shields JE, Thomas MA, Thommes M (2004) Characterisation of porous solids and powders: surface area, porosity and density. Springer, Switzerland

    Book  Google Scholar 

  3. Salonen J (2014) Drug delivery with porous silicon, Handbook of porous silicon, Leigh Canhan edit., Springer p.909

  4. Belhousse S, Cheraga H, Gabouze N, Outemzabet R (2004) Fabrication and characterization of a new sensing device based on hydrocarbon groups (CHx) coated porous silicon. Sensors Actuators B 100:250–255

    Article  CAS  Google Scholar 

  5. Canham LT (1990) Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl Phys Lett 57:1046

    Article  CAS  Google Scholar 

  6. Klyshko A (2008) Mechanical strength of porous silicon and its possible applications. Superlattice Microst 44:374–377

    Article  CAS  Google Scholar 

  7. Duttagupta SP, Chen XL, Jenekhe SA, Fauchetc PM (1997) Microhardness of porous silicon films and composites. Solid State Commun 101(1):33–37

    Article  CAS  Google Scholar 

  8. Canham LT (2014) Mechanical properties of porous silicon. Handbook of porous silicon, pp 213–220

    Google Scholar 

  9. Berger MG, Frohnoff S, Theiss W, Rossow U, Munder H (1994) Porous silicon science and technology. Springer, Berlin, p 345

    Google Scholar 

  10. Chazalviel J-N, Etman M, Ozanam F (1991) A voltammetric study of the anodic dissolution of p-Si in fluoride electrolytes. J Electroanal Chem 297:533–540

    Article  CAS  Google Scholar 

  11. Lehmann V (1993) The physics of macropore formation in low doped n-type silicon. J Electrochem Soc 140:2836

    Article  CAS  Google Scholar 

  12. Slimani A, Iratni A, Chazalviel J-N, Gabouze N, Ozanam F (2009) Experimental study of macropore formation in p-type silicon in a fluoride solution and the transition between macropore formation and electropolishing. Electrochim Acta 54:3139–3144

    Article  CAS  Google Scholar 

  13. Cheggou R, Kadoun A, Gabouze N, Ozanam F, Chazalviel J-N (2009) Theoretical modelling of the I–V characteristics of p-type silicon in fluoride electrolyte in the first electropolishing plateau. Electrochim Acta 54:3053–3058

    Article  CAS  Google Scholar 

  14. Matthai CC, Gavartin JL, Cafolla AA (1995) Structural and elastic properties of porous silicon. Thin Solid Films 255(Issues 1–2):174–176

    Article  CAS  Google Scholar 

  15. Romero C, Noyola JC, Santiago U, Valladares RM, Valladares A, Valladares AA (2010) A new approach to the computer modeling of amorphous nanoporous structures of semiconducting and metallic materials: a review. Materials 3:467–502

    Article  Google Scholar 

  16. Clark SJ, Segall MD, Pickard CJ, Hasnip PJ, Probert MIJ, Refson K, Payne MC (2005) First principles methods using CASTEP. Z Kristallogr 220:567–570

    CAS  Google Scholar 

  17. Segall MD, Lindan PJD, Probert MJ, Pickard CJ, Hasnip PJ, Clark SJ, Payne MC (2002) First-principles simulation: ideas, illustrations and the CASTEP code. J Phys Condens Matter 14:2717

    Article  CAS  Google Scholar 

  18. Calvino M, Trejo A, Iturrios MI, Crisóstomo MC, Carvajal E, Cruz-Irisson M (2014) DFT study of the electronic structure of cubic-SiC nanopores with a C-terminated surface. J Nanomater 2014

  19. Trejo A, Calvino M, Ramos E, Cruz-Irisson M (2012) Computational simulation of the effects of oxygen on the electronic states of hydrogenated 3C-porous SiC. Nanoscale Res Lett 7:471

    Article  Google Scholar 

  20. Trejo A, Calvino M, Cruz-Irisson M (2010) Chemical surface passivation of 3C-SiC nanocrystals: a first-principle study. Int J Quantum Chem 110:2455–2461

    CAS  Google Scholar 

  21. Monkhorst J, Pack JD (1976) Special points for Brillonin-zone integrations Hendrik. Phys Rev B 13(12)

  22. Pfrommer BG, Côté M, Louie SG, Cohen ML (1997) Relaxation of crystals with the quasi-newton method. J Comput Phys 131:233–240

    Article  CAS  Google Scholar 

  23. Fischer TH, Jan Almli W (1992) General methods for geometry and wave function optimization. J Phys Chem 96:9768–9774

    Article  CAS  Google Scholar 

  24. Baroni S, de Gironcoli S, Dal Corso A, Giannozzi P (2001) Phonons and related crystal properties from density-functional perturbation theory. Rev Mod Phys 73

    Article  CAS  Google Scholar 

  25. Selmane N, Cheknane A, Gabouze N, Maloufi N, Aillerie M (2017) Experimental study of optical and electrical properties of ZnO nano composites electrodeposited on n-porous silicon substrate for photovoltaic applications. E3S Web Conf 22:00155

    Article  Google Scholar 

  26. Herino R, Bomchil G, Barla K, Bertrand C, Ginoux JL (1987) Porosity and pore size distributions of porous silicon layers. J Electrochem Soc 134(8):1994–2000

    Article  CAS  Google Scholar 

  27. Lehman V (2002) Electrochemistry of silicon: instrumentation, science, materials and applications. Wiley-VCH, Weinheim. ISBN 3-527-29321-3

  28. Sze SM (1969) The physics of semiconductor devices. Wiley, New York pp. 12-20

    Google Scholar 

  29. Cisneros R, Ramırez C, Wang C (2007) Ellipsometry and ab initio approaches to the refractive index of porous silicon. J Phys Condens Matter 19:395010

    Article  Google Scholar 

  30. Lyer S, Xie Y-H (1993) Light emission from silicon. SCIENCE 260:40–46

    Article  Google Scholar 

  31. Morán-López JL (1998) Current problems in condensed matter. Springer US

  32. Cruz-Irissona M, Wang C (2009) Electronic and vibrational properties of porous silicon. J Nano R 5:153–160

    Article  Google Scholar 

  33. Chuan FZ, Raphael T (1994) Porous silicon. World scientific

    Google Scholar 

  34. Alfaro P, Cisneros R, Bizarro M, Cruz-Irisson M, Wang C (2011) Raman scattering by confined optical phonons in Si and Ge nanostructures. Nanoscale 3:1246

    Article  CAS  Google Scholar 

  35. Young TF, Chen CP, Liou JF, Chang TC (2000) Study on the vibrational state of the near surface region of porous silicon. J Porous Mat 7:339–343

    Article  CAS  Google Scholar 

  36. Salcedo WJ, Fernandez FJR, Galeazzo E (1997) Structural characterization of photoluminescent porous silicon with FTIR spectroscopy. Braz. J Phys 27(4):158–161

    Google Scholar 

  37. Liua F-M, Rena B, Yana J-W, Mao B-W, Tian Z-Q (2002) Initial oxidation processes on hydrogenated silicon surfaces studied by in situ Raman spectroscopy. J Electrochem Soc 149(1):G95–G99

    Article  Google Scholar 

  38. Palavicini A, Wang CM (2013) Infrared transmission in porous silicon multilayers. OPJ 3:20–25

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Mr. Mazari Redha from university of Medea for his helpful contribution in informatics assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Larabi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lachenani, H., Larabi, A. & Gabouze, N. Study of Structural, Electronic and Vibrational Properties of Porous Silicon with Different Porosity. Silicon 11, 2505–2515 (2019). https://doi.org/10.1007/s12633-019-00137-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-019-00137-1

Keywords

Navigation