Skip to main content
Log in

Nano-Texturing of Silicon Wafers Via One-Step Copper-Assisted Chemical Etching

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Nano-texturing of a silicon surface has been achieved via one-step copper-assisted chemical etching (CACE), which offers a simple approach for large-scale production of inverted pyramid textured silicon surfaces. The effects of H2O2 concentration, etching time and reaction temperature on the inverted pyramid-like structure and anti-reflective ability were systematically investigated. The results show that the lowest average reflectivity (4.3%) in the wavelength range of 300~1000 nm was obtained under the optimum conditions of 0.06 mol/L copper nitrate, 3 mol/L H2O2 concentration and 2 mol/L hydrofluoric acid (HF) at 60 °C for 5 min. The formation mechanism of the inverted pyramid structure is discussed and can be attributed to the moderate catalytic activity of nanocopper particles that induce etching preferentially along the non-<111 > directions of the silicon. The inverted pyramid structures, with the excellent anti-reflectivity, have potential application in the fabrication of solar cells compatible with the semiconducting industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sica D, Malandrino O, Supino S, Testa M, Lucchetti MC (2018) Management of end-of-life photovoltaic panels as a step towards a circular economy. Renew Sust Energ Rev 82:2934–2945

    Article  Google Scholar 

  2. Z. Ding, X. Zhao, L. L. Shaw, Reaction between LiBH4 and MgH2 induced by high-energy ball milling, 293 (2015) 236–245

  3. Yadav TS, Sharma AK, Kottantharayil A, Basu PK (2018) Low-cost and low-temperature chemical oxide passivation process for large area single crystalline silicon solar cells. Sol Energy 169:270–276

    Article  CAS  Google Scholar 

  4. Ding Z, Ma W, Wei K, Wu J, Zhou Y, Xie K (2012) Boron removal from metallurgical-grade silicon using lithium containing slag. J Non-Cryst Solids 358:2708–2712

    Article  CAS  Google Scholar 

  5. C. Zhang, L. Chen, Y. Zhu, Z. Guan, Fabrication of 20.19% Efficient Single-Crystalline Silicon Solar Cell with Inverted Pyramid Microstructure, 13 (2018) 91

  6. Li S, Ma W, Zhou Y, Chen X, Xiao Y, Ma M, Zhu W, Wei F (2014) Fabrication of porous silicon nanowires by MACE method in HF/H2O2/AgNO3 system at room temperature. Nanoscale Res Lett 9:196

    Article  Google Scholar 

  7. C.-H. Li, J.-H. Zhao, X.-Y. Yu, Q.-D. Chen, J. Feng, H.-B. Sun, Fabrication of black silicon with thermostable infrared absorption by femtosecond laser, PP (2016)1–1

  8. Cong Zhang SL, Ma W, Ding Z, Wan X, Yang J, Chen Z, Zou Y, Qiu J (2017) Fabrication of ultra-low antireflection SiNWs arrays from mc-Si using one step MACE. J Mater Sci Mater Electron 28(12):8510–8518

    Article  Google Scholar 

  9. Zhang C, Chen L, Zhu Y, Guan Z (2018) Fabrication of 20.19% efficient single-crystalline silicon solar cell with inverted pyramid microstructure. Nanoscale Res Lett 13:91

    Article  Google Scholar 

  10. Davidsen RS, Li H, A. To, Wang X, Han A, An J, Colwell J, Chan C, Wenham A, Schmidt MS, Boisen A, Hansen O, Wenham S, Barnett A (2016) Black silicon laser-doped selective emitter solar cell with 18.1% efficiency. Sol Energy Mater Sol Cells 144:740–747

    Article  CAS  Google Scholar 

  11. Davidson L, Haque KASME, Toor F (2017) Analytical model for simulating thin-film/wafer-based tandem junction solar cells. Sol Energy 150:287–297

    Article  CAS  Google Scholar 

  12. Barrio R, González N, Cárabe J, Gandía JJ (2013) Texturization of silicon wafers with Na2CO3 and Na2CO3/NaHCO3 solutions for heterojunction solar-cell applications. Mater Sci Semicond Process 16:1–9

    Article  CAS  Google Scholar 

  13. Yurasov DV, Novikov AV, Shaleev MV, Baidakova NA, Morozova EE, Skorokhodov EV, Ota Y, Hombe A, Kurokawa Y, Usami N (2018) Formation of black silicon using SiGe self-assembled islands as a mask for selective anisotropic etching of silicon. Mater Sci Semicond Process 75:143–148

    Article  CAS  Google Scholar 

  14. Hirano T, Nakade K, Li S, Kawai K, Arima K (2018) Chemical etching of a semiconductor surface assisted by single sheets of reduced graphene oxide. Carbon 127:681–687

    Article  CAS  Google Scholar 

  15. Zhao J, Wang A, Green MA (2001) High-efficiency PERL and PERT silicon solar cells on FZ and MCZ substrates. Sol Energy Mater Sol Cells 65:429–435

    Article  CAS  Google Scholar 

  16. A. Mavrokefalos, S. Eon Han, S. Yerci, M. Branham, G. Chen, Efficient Light Trapping in Inverted Nanopyramid Thin Crystalline Silicon Membranes for Solar Cell Applications, 12 (2012) 2792–2796

  17. Lu Y-T BA (2014) Anti-reflection layers fabricated by a one-step copper-assisted chemical etching with inverted pyramidal structures intermediate between texturing and nanopore-type black silicon. Mater Chem A 2:12043–12052

    Article  Google Scholar 

  18. Qiu J, Shang Y, Chen X, Li S, Ma W, Wan X, Yang J, Lei Y, Chen Z (2018) Enhanced efficiency of graphene-silicon Schottky junction solar cell through inverted pyramid arrays texturation. J Mater Sci Technol 34:2197–2204

    Article  Google Scholar 

  19. L.E.T. Lin J W, Wu C H, Formation of Inverted-Pyramid Structure by Modifing Laser Processing Parameters and Acid Etching Time[C]// ECS Meeting, 35 (31) (2011) 67–72

  20. Wang TDY, Chen Q, Liang F, Liu Z (2016) Highly efficient shrinkage of inverted-pyramid silicon nanopores by plasma-enhanced chemical vapor deposition technology. Nanotechnology 27(25):254005

    Article  Google Scholar 

  21. A. Peter Amalathas, M. Alkaisi, Enhancing the performance of solar cells with inverted nanopyramid structures fabricated by UV nanoimprint lithography, (2017)1–4

  22. Liu J, Zhang X, Sun G, Wang B, Zhang T, Yi F, Liu P (2015) Fabrication of inverted pyramid structure by cesium chloride self-assembly lithography for silicon solar cell. Mater Sci Semicond Process 40:44–49

    Article  Google Scholar 

  23. B. Jiang, M. Li, Y. Liang, Y. Bai, D. Song, Y. Li, J. Luo, Etching anisotropy mechanisms lead to the morphology-controlled silicon nanoporous structures by metal assisted chemical etching, 8 (2016) 1–15

  24. Cao M, Li S, Deng J, Li Y, Ma W, Zhou Y (2016) Texturing a pyramid-like structure on a silicon surface via the synergetic effect of copper and Fe(III) in hydrofluoric acid solution. Appl Surf Sci 372:36–41

    Article  CAS  Google Scholar 

  25. X. Geng, Z. Qi, M. Li, B.K. Duan, L. Zhao, P.W. Bohn, Fabrication of antireflective layers on silicon using metal-assisted chemical etching with in situ deposition of silver nanoparticle catalysts, 103 (2012) 98–107

  26. Zhang H, Huang J, Wang Y, Liu R, Huai X, Jiang J, Anfuso C (2018) Atomic force microscopy for two-dimensional materials: a tutorial review. Opt Commun 406:3–17

    Article  CAS  Google Scholar 

  27. Y. Cao, Y. Zhou, F. Liu, Y. Zhang, Y. Liu, Y. Guo, Progress and Mechanism of Cu Assisted Chemical Etching of Silicon in a Low Cu2+ Concentration Region, 4 (2015) P331-P336

  28. Z.P. Huang, N. Geyer, L.F. Liu, M.Y. Li, P. Zhong, Metal-assisted electrochemical etching of silicon, 21 (2010) 465301

  29. Liu L, Bao X-Q (2014) Silicon nanowires fabricated by porous gold thin film assisted chemical etching and their photoelectrochemical properties. Mater Lett 125:28–31

    Article  CAS  Google Scholar 

  30. Hsu C-H, Wu J-R, Lu Y-T, Flood DJ, Barron AR, Chen L-C (2014) Fabrication and characteristics of black silicon for solar cell applications: An overview. Mater Sci Semicond Process 25:2–17

    Article  CAS  Google Scholar 

  31. Backes A, Schmid U (2014) Impact of doping level on the metal assisted chemical etching of p-type silicon. Sensors Actuators B Chem 193:883–887

    Article  CAS  Google Scholar 

  32. Abouda Lachiheb M, Zrir MA, Nafie N, Abbes O, Yakoubi J, Bouaïcha M (2014) Investigation of the effectiveness of SiNWs used as an antireflective layer in solar cells. Sol Energy 110:673–683

    Article  CAS  Google Scholar 

  33. Geng X, Duan BK, Grismer DA, Zhao L, Bohn PW (2012) Monodisperse GaN nanowires prepared by metal-assisted chemical etching with in situ catalyst deposition. Electrochem Commun 19:39–42

    Article  CAS  Google Scholar 

  34. Yang YM, Chu PK, Wu ZW, Pu SH, Hung TF, Huo KF, Qian GX, Zhang WJ, Wu XL (2008) Catalysis of dispersed silver particles on directional etching of silicon. Appl Surf Sci 254:3061–3066

    Article  CAS  Google Scholar 

  35. Li B, Niu G, Sun L, Yao L, Wang C, Zhang Y (2018) Design optimization and antireflection of silicon nanowire arrays fabricated by au-assisted chemical etching. Mater Sci Semicond Process 82:1–8

    Article  CAS  Google Scholar 

  36. Chartier C, Bastide S, Lévy-Clément C (2008) Metal-assisted chemical etching of silicon in HF–H2O2. Electrochim Acta 53:5509–5516

    Article  CAS  Google Scholar 

  37. Venkatesan R, Arivalagan MK, Venkatachalapathy V, Pearce JM, Mayandi J (2018) Effects of silver catalyst concentration in metal assisted chemical etching of silicon. Mater Lett 221:206–210

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support of this work from the National Natural Science Foundation of China (Grant No. 61764009, 51764028, 51762043), Key Project of Yunnan Province Natural Science Fund (2018FA027), Yunnan Youth Fund Project (2016FD037) and the Program for Innovative Research Team in University of Ministry of Education of China (No. IRT_17R48).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shaoyuan Li or Jie Yu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omer, AAA., Yang, Y., Sheng, G. et al. Nano-Texturing of Silicon Wafers Via One-Step Copper-Assisted Chemical Etching. Silicon 12, 231–238 (2020). https://doi.org/10.1007/s12633-019-00117-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-019-00117-5

Keywords

Navigation