, Volume 11, Issue 2, pp 659–671 | Cite as

Analysis of Mechanical Properties of Jute Epoxy Composite with Cenosphere Filler

  • Subhendu Nath
  • Hemalata JenaEmail author
  • Priyanka
  • Deepak Sahini
Original Paper


The present work is involved with the evaluation of the mechanical, water absorption and thermal properties of woven jute reinforced composites with addition of different weight percentage of cenosphere (0wt. %, 5wt. % and 10wt. %) as a filler material. The specimens are prepared by hand lay-up technique and tested for different properties conforming the ASTM standards. Fly ash is an industrial waste generated at thermal power plant during burning of pulverized coal. Cenosphere is the hollow spherical particles extracted from the fly ash. It is an environmental pollutant having mixtures of metal oxides and it requires its disposal and utilization. Hence the incorporation of cenosphere in bio- reinforced composite would result in converting an industrial waste into a value added composite material. It is observed that addition of 5wt. % filler increases the tensile, flexural, interlaminar shear strength (ILSS) and hardness of the jute-epoxy composite. At 10wt. % of filler addition, the tensile strength is reduced nearly 7.5% , flexural strength by approximately 20% from non-filler loading composites. Similarly in the case of ILSS, it is reduced to 19.5% and for microhardness, it is reduced to 17.4%. Impact strength is decrease in addition of cenosphere filler. Addition of cenosphere filler into jute fibre, the water absorption properties and thermal conductivity values of composites are reduced.


Jute Epoxy Cenosphere Mechanical properties Thermal conductivity Water absorption 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Satyanrayana KG, Sukumaran K, Kulkarni A, et al. (1986) Fabrication and properties of natural fibre reinforced polyester composites. Compos 17:329–333CrossRefGoogle Scholar
  2. 2.
    Fan M (2017) 22 – Future scope and intelligence of natural based construction composites. Adv high Strength Nat Compos Constr.
  3. 3.
    Haghdan S, Smith GD (2015) Natural fibre reinforced polyester composites: A literature review. J Reinf Plast Compos.
  4. 4.
    Raask E (1968) Hollow and spherical particles in pulverised-fuel ash. J Inst Fuel 41:339–344Google Scholar
  5. 5.
    Asad H, Su D, Lu Z, Tianyuan F, Zongjin L (2016) Green lightweight cementitious composite incorporating aerogels and fly ash cenospheres – Mechanical and thermal insulating properties. Construc Build Mater 116:422–430CrossRefGoogle Scholar
  6. 6.
    Pichór W (2009) Properties of fibre reinforced cement composites with cenospheres from coal ash. Brittl Matrix Compos 9:245–254CrossRefGoogle Scholar
  7. 7.
    Dadkar N, Tomar BS, Satapathy BK (2009) Evaluation of flyash-filled and aramid fibre reinforced hybrid polymer matrix composites (PMC) for friction braking applications. Mat Des 30:4369–4376CrossRefGoogle Scholar
  8. 8.
    Balaji R, Sasikumar M (2014) A study on the effect of cenosphere on thermal and ablative behavior of cenosphere loaded ceramic/phenolic composites. Polym 55:6634–6639CrossRefGoogle Scholar
  9. 9.
    Divya VC, Khan MA, Rao BN, Sailaja RRN (2015) High density polyethylene/cenosphere composites reinforced with multi-walled carbon nanotubes: Mechanical, thermal and fire retardancy studies. Mat Des 65:377–386CrossRefGoogle Scholar
  10. 10.
    Jena H, Pradhan AK, Pandit MK (2016) Study of solid particle erosion wear behaviour of bamboo fibre reinforced polymer composite with cenosphere filler. Adv Polym Tech.
  11. 11.
    Dalbehera S, Acharya SK (2016) Impact of cenosphere on the erosion wear response of woven hybrid jute–glass epoxy composites. Adv Polym Tech.
  12. 12.
    Shah AN, Lakkad SC (1981) Mechanical properties of jute reinforced plastics. Sci Technol 15:41–46Google Scholar
  13. 13.
    Gowda TM, Naidu ACB, Rajput C (1999) Some mechanical properties of untreated jute fabric-reinforced polyester composites. Compos: Part A 30:277–284CrossRefGoogle Scholar
  14. 14.
    Raghvendra G, Ojha A, Acharya SK et al (2013) Jute fibre reinforced composites with the glass and neat epoxy composites. J Compos Mater.
  15. 15.
    Gopinath A, Senthil Kumar M, Elayaperumal A (2014) Experimental investigation on mechanical properties of jute fibre reinforced composites with polyester and epoxy resin matrices. Procedia Eng 97:2052–2063CrossRefGoogle Scholar
  16. 16.
    Barbero EJ (1998) Introduction to composite materials and design. Taylor and Francis, UKGoogle Scholar
  17. 17.
    Velmurugan R, Balaganesan G (2011) Modal analysis of pre and post impacted nano composite laminates. Latin Amer J Solid Struct 8:9–26CrossRefGoogle Scholar
  18. 18.
    Saba N, Paridah MT, Abdan K, Ibrahim NA (2016) Effect of oil palm nano filler on mechanical and morphological properties of kenaf reinforced epoxy composites. Constr Build Mater 123:15–26CrossRefGoogle Scholar
  19. 19.
    Essabir H, Boujmal R, Md Ouadi Bensalah, Rodrigue D, Bouhfid R, el kacem Qaiss A (2016) Mechanical and thermal properties of hybrid composites: Oil-palm fibre/clay reinforced high density polyethylene. Mech Mater 98:36–43CrossRefGoogle Scholar
  20. 20.
    Huang Z, Yu S, Li M (2010) Microstructures and compressive properties of AZ91D/fly-ash cenospheres composites. Trans Nonferrous Metals Soc China 20:458–462CrossRefGoogle Scholar
  21. 21.
    Jain R, Narula AK, Choudhary V (2009) Studies on Epoxy/Calcium Carbonate Nanocomposites. J Appl Polym Sci 114:2161–2168CrossRefGoogle Scholar
  22. 22.
    Rohatgi PK, Daoud A, Schultz BF, Puri T (2009) Microstructure and mechanical behavior of die casting AZ91D-fly ash cenosphere composites. Coposites Part A 40(6):883–896CrossRefGoogle Scholar
  23. 23.
    Das A, Satapathy BK (2011) Structural, thermal, mechanical and dynamic mechanical properties of cenosphere filled polypropylene composites. Mater Des 32:1477–1484CrossRefGoogle Scholar
  24. 24.
    Deo C, Acharya SK (2010) Effect of moisture absorption on mechanical properties of chopped natural reinforced epoxy composite. J Reinf Plast Compos 29:2513–2529CrossRefGoogle Scholar
  25. 25.
    Ramanaiah K, Prasad AV, Reddy KHC (2013) Mechanical, thermophysical and fire properties of sansevieria fibre reinforced polyester composites. Mat Des 49:986–991CrossRefGoogle Scholar
  26. 26.
    Pujari S, Ramakrishna A, Padal KTB (2016) Investigations on thermal conductivities of jute and banana fibre reinforced epoxy composites. J Inst Eng India Ser D.
  27. 27.
    Zampalonib M, Pourboghrat F, Yankovich SA, et al. (2007) Kenaf natural reinforced polypropylene composites: A discussion on manufacturing problems and solutions. Compos: Part A 38:1569–1580CrossRefGoogle Scholar
  28. 28.
    Hoareau W, Trindade WG, et al. (2004) Sugarcane bagasse and curaua lignins oxidized by chlorine dioxide andeacted with furfuryl alcohol: Characterisation and stability. Polym Degr Stab 86:567–657CrossRefGoogle Scholar
  29. 29.
    Hattallia S, Benaboura A, et al. (2002) Adding value to alfa grass (Stipa Tenacissima L.) soda ligninas phenolic resins 1. Lignin characterisation. Polym Degr Stab 76:259–264CrossRefGoogle Scholar
  30. 30.
    Wambua P, Ivens J, Verpoest I (2003) Natural fibres: can they replace glass in reinforced plastics?. Compos Sci Technol 63:1259–1264CrossRefGoogle Scholar
  31. 31.
    Ratna Prasad AV, Mohana Rao K (2011) Mechanical properties of natural fibre reinforced polyester composites: Jowar, sisal and bamboo. Mat Des 32:4658–4663CrossRefGoogle Scholar
  32. 32.
    Arib RMN, Sapuan SM, Ahmad M, et al. (2006) Mechanical properties of pineapple leaf fibre reinforced polypropylene composites. Mat Des 27:391–396CrossRefGoogle Scholar
  33. 33.
    Shinichi S, Yong C, Isao F (2005) Press forming of short natural- fibre reinforced biodegradable resin: effects of volume and length on flexural properties. Polym Test 24:1005–1011CrossRefGoogle Scholar
  34. 34.
    Ku H, Wang H, Pattarachaiyakoop N, et al. (2011) A review on the tensile properties of natural reinforced polymer composites. Compos: Part B 42:856–873CrossRefGoogle Scholar
  35. 35.
    Jacob M, Thomas S, Varughese KT (2004) Mechanical properties of sisal oil reinforced natural rubber composites. Compos Sci Technol 64:955–965CrossRefGoogle Scholar
  36. 36.
    Herrera-Franco PJ, Valadez-Gonzalez A (2000) Mechanical properties of continuous natural fibre reinforced polymer composites. Compos: Part A 35:339–345CrossRefGoogle Scholar
  37. 37.
    Hossen MD, Hamdan S, Rahman MR, et al. (2016) Effect of clay content on the morphological, thermo-mechanical and chemical resistance properties of propionic anhydride treated jute fibre/polyethylene/nanoclay nanocomposites. Measur 90: 404–411Google Scholar
  38. 38.
    Shalwan A, Yousif BF (2013) In state of art: Mechanical and tribological behaviour of polymeric composites based on natural fibres. Mat Des 48:14–24CrossRefGoogle Scholar
  39. 39.
    Dalbehera S, Acharya SK (2015) Effect of cenosphere addition on the mechanical properties of jute-glass fibre hybrid epoxy composites. J Inds Tex 46:177–188CrossRefGoogle Scholar
  40. 40.
    Sever K, Sarikanat M, Seki Y, et al. (2010) The mechanical properties of γ-methacryloxypropyltrimethoxy silane treated jute polyester composites. J Compos Mat 44(15):1913–1924CrossRefGoogle Scholar
  41. 41.
    Braga RA, Magalhaes PAA Jr (2015) Analysis of the mechanical and thermal properties of jute and glass fibre as reinforcement epoxy hybrid composites. Mat Sci Eng C 56:269–273CrossRefGoogle Scholar
  42. 42.
    Hu R, Lim JK (2007) Fabrication and mechanical properties of completely biodegradable hemp fibres reinforced polylactic acid composites. J Compos Mat 41(13):1655–1669CrossRefGoogle Scholar
  43. 43.
    Acharya SK, Mishra P, Meher SK (2011) Effect of surface treatment on the mechanical properties of bagasse fibre reinforced polymer composite. BioResources 6:3155–3165Google Scholar
  44. 44.
    Satyanrayana KG, Sukumaran K, Kulkarni A, et al. (1986) Fabrication and properties of natural fibre reinforced polyester composites. Compos 17:329–333CrossRefGoogle Scholar
  45. 45.
    Yao F, Wu Q, Lei Y, et al. (2008) Rice straw fibre-reinforced high-density polyethylene composite: Effect of type and loading. Ind Crops Prod 28:63–72CrossRefGoogle Scholar
  46. 46.
    Feng Y, Hu Y, Zhao G, et al. (2010) Preparation and mechanical properties of high-performance short ramie fibre-reinforced polypropylene composites. J Appl Polym Sci 122:1564–1571CrossRefGoogle Scholar
  47. 47.
    Tajeddin B, Rahman RA, Abdulah LC (2010) The effect of polyethylene glycol on the characteristics of kenaf cellulose-low density polyethylene biocomposites. Int J Biol Macromol 47:292–297CrossRefGoogle Scholar
  48. 48.
    Mahdavi S, Kermanian H, Varshoei A (2010) Comparison of mechanical properties of date palm -polyethylene composite. BioResources 5:391–403Google Scholar
  49. 49.
    Bendahou A, Kaddami H, Sautereau H, et al. (2008) Short palm tree s polyolefin composites: Effect of fillercontent and coupling agent on physical properties. Macromol Mater Eng 293:140–148CrossRefGoogle Scholar
  50. 50.
    Bledzki AK, Jaszkiewicz A, Scherzer D (2009) Mechanical properties of PLA composites with man-made cellulose and abaca s. Compos: Part A 40:404–412CrossRefGoogle Scholar
  51. 51.
    Morreale M, Scaffaro R, Maio A, et al. (2008) Effect of adding wood flour to the physical properties of a biodegradable polymer. Compos: Part A 39:503–513CrossRefGoogle Scholar
  52. 52.
    Shekeil YAE, Sapuan SM, Abdan K, et al. (2012) Influence of content on the mechanical and thermal properties of kenaf fibre reinforced thermoplastic polyurethane composites. Mater Des 40:299–303CrossRefGoogle Scholar
  53. 53.
    Lei W, Lei WG, Ren C (2006) Effect of volume fraction of ramie cloth on physical and mechanical properties of ramie cloth-UP resin composite. Trans Nonferrous Met Soc China 16:474–477CrossRefGoogle Scholar
  54. 54.
    Harish S, Michael PD, Bensely A, et al. (2009) Mechanical property evaluation of natural coir composite. Mater Charact 60:44–49CrossRefGoogle Scholar
  55. 55.
    Verma CS, Chariar VM (2012) Development of layered laminate bamboo composite and their mechanical properties. Compos: Part B 43:1063–1069CrossRefGoogle Scholar
  56. 56.
    Bergman R, Cai Z, Carll CG, et al. (1999) Wood Handbook, Wood as an engineering material. USDA Forest product lab, WisconsinGoogle Scholar
  57. 57.
    Beg MDH, Pickering KL (2008) Reprocessing of wood fibre reinforced polypropylene composites. Part I: Effects on physical and mechanical properties. Compos: Part A 39:1091–1100CrossRefGoogle Scholar
  58. 58.
    Joshi SV, Drzal LT, Mohanty AK, et al. (2004) Are natural fibre composites environmentally superior to glass reinforced composites?. Compos: Part A 35:371–376CrossRefGoogle Scholar
  59. 59.
    Huda MS, Drzal LT, Mohanty AK, et al. (2006) Chopped glass and recycled newspaper as reinforcement fibres in injection molded Poly (LacticAcid) (PLA) composites: A comparative study. Compos Sci Technol 66:1813–1824CrossRefGoogle Scholar
  60. 60.
    Harish S, Peter Michael D, Bensely A, et al. (2009) Mechanical property evaluation of natural coir composite. Mater Charact 60:44–49CrossRefGoogle Scholar
  61. 61.
    Mandal S, Alam S, Varma IK, et al. (2010) Studies on bamboo glass fibre reinforced USP and VE resin. J Reinf Plast Compos 29: 43–51CrossRefGoogle Scholar
  62. 62.
    Biswas S, Satapathy A (2009) Tribo-performance analysis of red mud filled glass-epoxy composites using taguchi experimental design. Mater Des 30:2841–2853CrossRefGoogle Scholar
  63. 63.
    Patnaik A, Satapathy A, Mahapatra SS, et al. (2008) Parametric optimization of erosion wear of polyester-GF-alumina hybrid composites using taguchi method. J Reinf Plast Compos 27:1039–1058CrossRefGoogle Scholar
  64. 64.
    Gujjala R, Ojha S, Acharya SK, et al. (2014) Mechanical properties of woven jute-glass hybrid reinforced epoxy composite. J Compos Mater 48(28):3445–3455CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Subhendu Nath
    • 1
  • Hemalata Jena
    • 1
    Email author
  • Priyanka
    • 1
  • Deepak Sahini
    • 2
  1. 1.School of Mechanical EngineeringKalinga Institute of Industrial Technology (KIIT) Deemed to be UniversityBhubaneswarIndia
  2. 2.Department of Production EngineeringBirla Institute of TechnologyMesra RanchiIndia

Personalised recommendations