Skip to main content

Advertisement

Log in

Physicochemical Properties of Bis-GMA/TEGDMA Dental Resin Reinforced with Silanized Multi-Walled Carbon Nanotubes

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The multi-walled carbon nanotubes (CNTs) modified by different amount of silane coupling agents named 3-(methacryloxy)propyltrimethoxysilane (γ-MPS), were incorporated into dental resin matrix in a series of mass ratio, with the aim to enhance the mechanical properties of dental resin matrix. The double bond conversion (DC) of dental resin matrix was investigated with a FT-IR instrument. Water sorption (WS) and solubility (SL) were obtained until the mass variation of dental resin matrix in distilled water kept stable. Flexural strength (FS) and modulus (FM) of dental resin matrix were measured using a three-point bending set up in a Universal testing machine. The fracture surfaces of specimens were observed with a scanning electron microscope. The results showed that all of CNTs containing dental resin matrix had lower DC (p < 0.05) than control resin matrix. Only adding 0.025 wt.% multi-walled carbon nanotubes (modified with 1.0 wt.% of γ-MPS) into dental resin matrix could enhance the FS and FM of dental resin matrix, as well as reducing the WS and SL of dental resin matrix. Therefore, the best properties of dental resin matrix could be obtained by incorporating 0.025 wt.% of CNTs, which were modified by 1.0 wt.% of silane coupling agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kaizer MR, Oliveira-Ogliari AD, Cenci MS, Opdam NJM, Moraes RR (2014) Do nanofill or submicron composites show improved smoothness and gloss? A systematic review of in vitro studies. Dent Mater 30:41–78

    Article  CAS  Google Scholar 

  2. Wei Y, Jin D, Wei G, Yang D, Xu J (1998) Novel organic–inorganic chemical hybrid fillers for dental composite materials. J Appl Polym Sci 70:1689–1699

    Article  CAS  Google Scholar 

  3. Hamouda IM, Shehata SH (2011) Shear bond strength of ormocer-based restorative material using specific and nonspecific adhesive systems. Isrn Mater Sci, 1–4

  4. Wang X, Cai Q, Zhang X, Wei Y, Xu M, Yang X, et al (2016) Improved performance of Bis-GMA/TEGDMA dental composites by net-like structures formed from SiO2 nanofiber fillers. Mat Sci Eng C-Mater 59:464–470

    Article  CAS  Google Scholar 

  5. Niu LN, Fang M, Jiao K, Tang LH, Xiao YH, Shen LJ, et al (2010) Tetrapod-like zinc oxide whisker enhancement of resin composite. J Dent Res 89:746–750

    Article  CAS  PubMed  Google Scholar 

  6. Abi CB, Emrullahoğlu OF, Said G (2012) Microstructure and mechanical properties of MgO-stabilized ZrO2-Al2O3 dental composites. J Mech Behav Biomed 18:123–131

    Article  CAS  Google Scholar 

  7. Dafar MO, Grol MW, Canham PB, Dixon SJ, Rizkalla AS (2016) Reinforcement of flowable dental composites with titanium dioxide nanotubes. Dent Mater 32:817–826

    Article  CAS  PubMed  Google Scholar 

  8. Xia Y, Zhang F, Xie H, Gu N (2008) Nanoparticle-reinforced resin-based dental composites. J Dent 36:450–455

    Article  CAS  PubMed  Google Scholar 

  9. Kumar SR, Patnaik A, Bhat IK (2017) The in vitro wear behavior of nanozirconia-filled dental composite in food slurry condition. P I Mech Eng J-J Eng 231:23–40

    CAS  Google Scholar 

  10. Santos C, Luklinska ZB, Clarke RL, Daw KWM (2001) Hydroxyapatite as a filler for dental composite materials: mechanical properties and in vitro bioactivity of composites. J Mater Sci-Mater M 12:565–573

    Article  CAS  Google Scholar 

  11. Liu F, Jiang X, Zhang Q, Zhu M (2014) Strong and bioactive dental resin composite containing poly(Bis-GMA) grafted hydroxyapatite whiskers and silica nanoparticles. Compos Sci Technol 101:86–93

    Article  CAS  Google Scholar 

  12. Liu F, Sun B, Jiang X, Aldeyab SS, Zhang Q, Zhu M (2014) Mechanical properties of dental resin/composite containing urchin-like hydroxyapatite. Dent Mater 30:1358–1368

    Article  CAS  PubMed  Google Scholar 

  13. Kumar SR, Bhat IK, Patnaik A (2017) Novel dental composite material reinforced with silane functionalized microsized gypsum filler particles. Polym Compos 38:404–415

    Article  CAS  Google Scholar 

  14. Kuma SR, Patnaik A, Bhat IK (2017) Development and characterization of marble dust-filled dental composite. J Compos Mater 51:1997–2008

    Article  CAS  Google Scholar 

  15. Sharma A, Alam S, Sharma C, Patnaik A, Kumar SR (2017) Static and dynamic mechanical behavior of microcapsule-reinforced dental composite. https://doi.org/10.1177/1464420717733770

  16. Devaprakasam D, Hatton PV, Moebus G, Inkson BJ (2008) Effect of microstructure of nano- and micro-particle filled polymer composites on their tribo-mechanical performance. J Phys Conf Ser 126:012057

    Article  CAS  Google Scholar 

  17. De Moraes RR, Gonçalves LS, Lancellotti AC, Consani S, Correr-Sobrinho L, Sinhoreti MA (2009) Nanohybrid resin composites: nanofiller loaded materials or traditional microhybrid resins?. Oper Dent 34:551–557

    Article  PubMed  Google Scholar 

  18. Pontes LF, Alves EB, Alves BP, Ballester RY, Dias CGBT, Silva CM (2013) Mechanical properties of nanofilled and microhybrid composites cured by different light polymerization modes. Gen Dent 61:30

    PubMed  Google Scholar 

  19. Melander J, Dunn WP, Link MP, Wang Y, Xu C, Walker MP (2011) Comparison of flexural properties and surface roughness of nanohybrid and microhybrid dental composites. Gen Dent 59:342–347

    PubMed  Google Scholar 

  20. Shouha P, Swain M, Ellakwa A (2014) The effect of fiber aspect ratio and volume loading on the flexural properties of flowable dental composite. Dent Mater 30:1234–1244

    Article  CAS  PubMed  Google Scholar 

  21. Gao Y, Sagi S, Zhang L, Liao Y, Cowles DM, Sun Y, Fong H (2008) Electrospun nano-scaled glass fiber reinforcement of bis-GMA/TEGDMA dental composites. J Appl Polym Sci 110:2063–2070

    Article  CAS  Google Scholar 

  22. Dodiuk-Kenig H, Lizenboim K, Roth S, Zalsman B, McHale W, Jaffe M, et al (2008) Performance enhancement of dental composites using electrospun nanofibers. J Nanomater 3:145–152

    Google Scholar 

  23. Borges ALS, Münchow EA, Souza ACD, Yoshida T, Vallittu PK, Bottino MC (2015) Effect of random/aligned nylon-6/MWCNT fibers on dental resin composite reinforcement. J Mech Behav Biomed 48:134–144

    Article  CAS  Google Scholar 

  24. Jin AK, Dong GS, Kang TJ, Youn JR (2006) Effects of surface modification on rheological and mechanical properties of CNT/epoxy composites. Carbon 44(10):1898–1905

    Article  CAS  Google Scholar 

  25. Lachman N, Wagner HD (2010) Correlation between interfacial molecular structure and mechanics in CNT/epoxy nano-composites. Compos Part A-Appl S 41:1093–1098

    Article  CAS  Google Scholar 

  26. Jia X, Zhang Q, Zhao M, Xu G, Huang J, Qian W, et al (2012) Dramatic enhancements in toughness of polyimide nanocomposite via long-CNT-induced long-range creep. J Mater Chem 22:7050–7056

    Article  CAS  Google Scholar 

  27. Kearns JC, Shambaugh RL (2010) Polypropylene fibers reinforced with carbon nanotubes. J Appl Polym Sci 86:2079–2084

    Article  CAS  Google Scholar 

  28. Zhang F, Xia Y, Xu L, Gu N (2008) Surface modification and microstructure of single-walled carbon nanotubes for dental resin-based composites. J Biomed Mater Res B 86B:90–97

    Article  CAS  Google Scholar 

  29. Khan AS, Sidra L, Sarfraz Z, Mustafa W (2015) Synthesis of electrospun bioactive carbon nanotube based dental resin-based composites. Dent Mater 31:e45–e46

    Article  Google Scholar 

  30. Zhou Z, Wang S, Lu L, Zhang Y, Zhang Y (2008) Functionalization of multi-wall carbon nanotubes with silane and its reinforcement on polypropylene composites. Compos Sci Technol 68:1727–1733

    Article  CAS  Google Scholar 

  31. Ma PC, Kim JK, Tang BZ (2006) Functionalization of carbon nanotubes using a silane coupling agent. Carbon 44:3232–3238

    Article  CAS  Google Scholar 

  32. Nakaramontri Y, Nakason C, Kummerlowe C, Vennemann N (2015) Effects of in-situ functionalization of carbon nanotubes with bis(triethoxysilylpropyl) tetrasulfide (TESPT) and 3-Aminopropyltriethoxysilane (APTES) on properties of epoxidized natural rubber–carbon nanotube composites. Polym Eng Sci 55:2500–2510

    Article  CAS  Google Scholar 

  33. Wang J, Liang G, Yan H (2009) Mechanical and thermal properties of functionalized multiwalled carbon nanotubes/cyanate ester composite. Polym Eng Sci 49:680–684

    Article  CAS  Google Scholar 

  34. Wilson KS, Zhang K, Antonucci JM (2005) Systematic variation of interfacial phase reactivity in dental nanocomposites. Biomaterials 26:5095–5103

    Article  CAS  PubMed  Google Scholar 

  35. Veranes CY, Martin D, Krael JM, Alvarez R (2006) Characterization of light-cured dental composites prepared from Bis-GMA/TEEDGDMA and Bis-GMA/MPS mistures. Lat Am Appl Res 36:1–6

    CAS  Google Scholar 

  36. Xie Y, Qian H, Zhong Y, Guo H, Hu Y (2012) Facile low-temperature synthesis of carbon nanotube/TiO2 nanohybrids with enhanced visible-light driven photocatalytic activity. Int J Photoenergy, 682138

  37. Yin M, Liu F, He J (2016) Preparation and characterization of Bis-GMA free dental resin system with synthesized dimethacrylate monomer TDDMMA derived from tricyclo[5.2.1.0(2,6)]-decanedimethanol. J Mech Behav Biomed 57:157–163

    Article  CAS  Google Scholar 

  38. Santos C, Clarke RL, Braden M, Guitian F, Davy KWM (2002) Water sorption characteristics of dental composites incorporating hydroxyapatite filler. Biomaterials 23:1897–1904

    Article  CAS  PubMed  Google Scholar 

  39. Liu D, Liu F, He J, Lassila LVJ, Vallittu PK (2013) Synthesis of a novel tertiary amine containing urethane dimethacrylate monomer (UDMTA) and its application in dental resin. J Mater Sci-Mater M 24:1595–1603

    Article  CAS  Google Scholar 

  40. Wu G, Liu S, Wu X, Ding X (2016) Influence of MWCNTs modified by silane coupling agent KH570 on the properties and structure of MWCNTs/PLA composite film. J Polym Res 23:1–8

    Article  CAS  Google Scholar 

  41. Zhu W, Liu F, He J (2016) Synthesis of radio-opaque methacrylate monomer and its application in visible light-curable dental resin. Adv Polym Tech, 21738

  42. Kang S, Herzberg M, Rodrigues DF, Elimelech M (2008) Antibacterial effects of carbon nanotubes: size does matter. Langmuir 24:6409–6413

    Article  CAS  PubMed  Google Scholar 

  43. Sayes CM, Liang F, Hudson JL, Mendez J, Guo W, Beach JM, et al (2006) Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro. Toxicol Lett 161:135–142

    Article  CAS  PubMed  Google Scholar 

  44. Wu W, Wieckowski S, Pastorin G, Benincasa M, Klumpp C, Briand JP, et al (2005) Targeted delivery of amphotericin B to cells by using functionalized carbon nanotubes. Angew Chem Int Ed Engl 44:6358–6362

    Article  CAS  PubMed  Google Scholar 

  45. Dumortier H, Lacotte S, Pastorin G, Marega R, Wu W, Bonifazi D, et al (2006) Functionalized carbon nanotubes are non-cytotoxic and preserve the functionality of primary immune cells. Nano Lett 6:1522–1528

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Natural Science Foundation of Guangdong Province, China (2015A030310338).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingwei He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, W., Liu, F. & He, J. Physicochemical Properties of Bis-GMA/TEGDMA Dental Resin Reinforced with Silanized Multi-Walled Carbon Nanotubes. Silicon 11, 1345–1353 (2019). https://doi.org/10.1007/s12633-018-9930-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-018-9930-0

Keywords

Navigation