, Volume 11, Issue 2, pp 1143–1150 | Cite as

Investigation on the Mechanical and Thermal Properties of PLA/Calcium Silicate Biocomposites for Injection Molding Applications

  • Savitha Saravana
  • Ravichandran KandaswamyEmail author
Original Paper


In this study the influence of wollastonite (calcium silicate) on the mechanical and thermal properties of polylactic acid (PLA) biocomposites was investigated. The PLA/wollastonite biocomposites was prepared by melt blending technique. The interaction of wollastonite with PLA matrix was analyzed by Fourier transformed infrared spectroscopy. The mechanical properties such as tensile strength, percentage of elongation at break, tensile modulus, flexural strength, impact strength was determined. The thermal properties such as thermogravimetric analysis and differential scanning calorimetry were analyzed for the biocomposites. The PLA/wollastonite biocomposites exhibits high mechanical and thermal performance than the neat PLA. The biocomposites were also investigated through scanning electron microscope (SEM) micrographs to examine the adhesion between PLA and wollastonite. In addition, the results of SEM acquired are in good agreement with the data resulted from FTIR and impact strength of the biocomposites. The biocomposites shows improvement in crystallization and thermal stability than that of neat PLA and is suitable for melt processing and fabrication of injection molded products.


Polylactic acid Wollastonite Biocomposites Thermal application Melt blending 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The author is gratefully acknowledge the financial support from University Grants Commission, New Delhi (UGC F.No.42-404/2013).


  1. 1.
    Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. J Macromol Biosci 4(9):835–864CrossRefGoogle Scholar
  2. 2.
    Gref R, Minamitake Y, Peracchia MT, Trubetskoy V, Torchilin V, Langer R (1994) Biodegradable long-circulating polymeric nanospheres. J Sci Marg 263(5153):1600–1603Google Scholar
  3. 3.
    Armentanoa I, Bitinis N, Fortunatia E, Mattiolia S, Rescignanoa N, Verdejob R, Manchadob MAL, Kennya JM (2013) Multifunctional nano-structured PLA materials for packaging and tissue engineering. J Progress Polym Sci 38(10):1720–1747CrossRefGoogle Scholar
  4. 4.
    Raquez JM, Habibi Y, Murariu M, Dubois P (2013) Polylactide (PLA)-based nano composites. J Progress Polym Sci 38(10):1504–1542CrossRefGoogle Scholar
  5. 5.
    Shakoor A, Thomas NL (2014) Talc as a nucleating agent and reinforcing filler in poly(lactic acid) composites. J Polym Eng Sci 54(1):64–70CrossRefGoogle Scholar
  6. 6.
    Souza KS, Jaimes RFVV, Rogero SO, Nascente PADP, Agostinho SML (2016) In vitro cytotoxicity test and surface characterization of cocrw alloy in artificial saliva solution for dental applications. Braz Dent J 27(1):181–186CrossRefGoogle Scholar
  7. 7.
    Liang Xu L, Sun R, Zhang L, Yang DJ, Tan YF, Xiong CD (2008) Studies on poly(D, L-lactic acid)/wollastonite composites as a biomaterial. Iran Polym J 17(6):407–418Google Scholar
  8. 8.
    Saadaldin SA, Rizkalla AS (2014) Synthesis and characterization of wollastoniteglass–ceramics for dental implant applications. J Dental Mater 30(3):364–371CrossRefGoogle Scholar
  9. 9.
    Narayan R (2002) Overview of biodegradable & biobased plastics technologies. Proceedings of the Tappi Place Conference 371–378Google Scholar
  10. 10.
    Mansor MK, Ibrahim NA, Yunus WMZW, Thevy RC (2011) Effect of triacetin on the mechanical properties, morphology and water absorption of poly(lactic acid)/tapioca starch composites. Malaysian Polym J 6 (2):165–175Google Scholar
  11. 11.
    Xu L, Xiong ZC, Yang D, Zhang LF, Chang J (2008) Preparation and Invitro Degradation of Novel bioactive polylactide/wollastonite scaffolds. J Appl Polym Sci 114(6):3396– 3406CrossRefGoogle Scholar
  12. 12.
    Ye L, Chang J, Ning C, Lin K (2008) Fabrication of poly-(DL-lactic Acid)–Wollastonite Composite Films with Surface Modified β-CaSiO3 Particles. J Biomater Appl 22(5):465–480CrossRefGoogle Scholar
  13. 13.
    Chen M, Wan C, Shou W, Hang Y, Zhang Y, Zhang J (2007) Effect of interfacial adhesion on properties of polypropylene/wollastonite composites. J Appl Polym Sci 107(3):1718–1723CrossRefGoogle Scholar
  14. 14.
    Tong J, Ma Y, Jiang M (2003) Effects of the wollastonite fiber modification on the sliding wear behavior of the UHMWPE composites. J Wear 255(1-6):734–741CrossRefGoogle Scholar
  15. 15.
    Cecen V, Boudenne A, Ibos L, Novak I, Nogellova Z, Prokeš J, Krupa I (2008) Electrical, mechanical and adhesive properties of ethylene-vinylacetate copolymer (EVA) filled with wollastonite fibers coated by silver. Eur Polym J 44(11):3827–3834CrossRefGoogle Scholar
  16. 16.
    Asar NV, Korkmaz T, Gul EB (2010) The effect of wollastonite incorporation on the linear firing shrinkage and flexural strength of dental aluminous core ceramics: a preliminary study. J Mater Des 31(5):2540–2545CrossRefGoogle Scholar
  17. 17.
    Singh UP, Biswas BK, Ray BC (2009) Evaluation of mechanical properties of polypropylene filled with wollastonite and silicon rubber. J Mater Sci Eng A 501(1-2):94–98CrossRefGoogle Scholar
  18. 18.
    Liang JZ, Li B, Ruan JQ (2015) Crystallization properties and thermal stability of polypropylene composites filled with wollastonite. J Polym Test 42(1):185–191CrossRefGoogle Scholar
  19. 19.
    Fukushima K, Tabuani D, Camino G (2012) Poly(lactic acid)/clay nanocomposites: effect of nature and content of clay on morphology, thermal and thermo-mechanical properties. J Mater Sci Eng C 32(7):1790–1795CrossRefGoogle Scholar
  20. 20.
    Fortunati E, Puglia D, Kenny JM, Haque MM, Pracella M (2013) Effect of ethylene-co-vinyl acetate-glycidylmethacrylate and cellulose microfibers on the thermal, rheological and biodegradation properties of poly(lactic acid) based systems. J Polym Degrad Stab 98(12):2742–2751CrossRefGoogle Scholar
  21. 21.
    Dasari A, Misra RDK (2004) The role of micrometric wollastonite particles on stress whitening behavior of polypropylene composites. J Acta Mater 52(6):1683–1697CrossRefGoogle Scholar
  22. 22.
    Thakur VK, Kessler MR (2015) Green biorenewable biocomposites from knowledge to industral applications. Apple Academic Press, ontarioCrossRefGoogle Scholar
  23. 23.
    Khalaf M N (2010) Effect of alkali lignin on heat of fusion, crystallinity and melting points of low density polyethylene (LDPE), medium density polyethylene (MDPE) and high density polyethylene (HDPE). J Thi-qar Sci 2(2):89–95Google Scholar
  24. 24.
    Kocic N, Kretschmer K, Bastian M, Heidemeyer P (2012) The influence of talc as a nucleation agent on the nonisothermal crystallization and morphology of isotactic polypropylene: The application of the Lauritzen-Hoffmann, Avrami, and Ozawa theories. J Appl Polym Sci 126(4):1207–1217CrossRefGoogle Scholar
  25. 25.
    Jingjiang L, Xiufen W, Qipeng G (1990) The β crystalline form of wollastonite- filled polypropylene. J Appl Polym Sci 41(11):2829–2835CrossRefGoogle Scholar
  26. 26.
    Vidovic E, Faraguna F, Jukic A (2017) Influence of inorganic fillers on PLA crystallinity and thermal Properties. J Therm Anal Calorim 127(1):371–380CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Rubber and Plastics Technology, Madras Institute of Technology CampusAnna UniversityChennaiIndia

Personalised recommendations