Skip to main content
Log in

Oxidation of Methylene via Sn-adsorbed Boron Nitride Nanocage (B30N30): DFT Investigation

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In this study, by using of density functional theory calculations, the oxidation of methylene on surface of Tin-doped boron nitride nanocage via Langmuir Hinshelwood and Eley Rideal mechanisms was investigated. Results show that in Tin-doped boron nitride nanocage, there are three strong covalent bonds between Tin atom and bordering nitrogen atoms. Calculated data reveal that adsorption of oxygen molecule on surface of Tin-doped boron nitride nanocage increased the activity and strength of boron nitride nanocage. Results show that computed energy barrier for the first reaction oxidation of methylene on surface of boron nitride nanocage via Langmuir Hinshelwood mechanism was lower than Eley Rideal mechanism. In according to obtained thermodynamic data, it can be concluded the boron nitride nanocage was high potential catalyst for oxidation of methylene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kiani A, Haratipour P, Ahmadi M, Dorabei RZ, Mahmoodi A (2017) J Water Supply Res T 66:239–248

    Article  Google Scholar 

  2. Parsaee Z, Haratipour P, Janghorban Lariche M, Vojood A (2018) Ultrason Sonochem 41:337–349

    Article  CAS  PubMed  Google Scholar 

  3. Haratipour P, Baghban A, Mohammadi AH, Hosseininazhad SH, Bahadori A (2017) J Mol Liq 242:146–159

    Article  CAS  Google Scholar 

  4. Doranehgard MH, Samadyar H, Mesbah M, Haratipour P, Samiezade S (2017) Fuel 202:29–35

    Article  CAS  Google Scholar 

  5. Baghban A, Sasanipour J, Haratipour P, Alizad M, Vafaee Ayouri M (2017) Chem Eng Res Des 126:67–75

    Article  CAS  Google Scholar 

  6. Gao W, Haratipour P, Kahkha MRR, Tahvili A (2018) Ultrason Sonochem 44:152–161

    Article  CAS  PubMed  Google Scholar 

  7. Freund HJ, Meijer G, Scheffler M (2011) Angew Chem 50:10064–10094

    Article  CAS  Google Scholar 

  8. Johnson RS, DeLaRiva A, Ashbacher V (2013) Phys Chem Chem Phys 15:7768–7776

    Article  CAS  PubMed  Google Scholar 

  9. Su HY, Yang MM, Bao XH, Li WX (2008) J. Phys Chem C 112:17303–17310

    Article  CAS  Google Scholar 

  10. Chen MS, Cai Y, Yan Z (2007) Surf Sci 601:5326–5331

    Article  CAS  Google Scholar 

  11. Piccinin S, Stamatakis M (2014) ACS Catal 4:2143–2152

    Article  CAS  Google Scholar 

  12. Liu W, Zhu Y, Lian J, Jiang Q (2007) J Phys Chem C 111:1005–1009

    Article  CAS  Google Scholar 

  13. Liu DJ (2007) J Phys Chem C 111:14698–14706

    Article  CAS  Google Scholar 

  14. Wallace WT, Whetten RL (2002) J. Am Chem Soc 124:7499–7505

    Article  CAS  PubMed  Google Scholar 

  15. Chang C, Cheng C, Wei C (2008) J Chem Phys 128:124710–124710

    Article  CAS  PubMed  Google Scholar 

  16. Du J, Wu G, Wang J (2010) J Phys Chem A 114:10508–10514

    Article  CAS  PubMed  Google Scholar 

  17. Sharifian S, Harasek M, Haddadi B (2016) Chem Prod Process Mod 11:67–72

    CAS  Google Scholar 

  18. Sharifian S, Miltner M, Harasek M (2016) Chem Eng Trans 52:565–570

    Google Scholar 

  19. Sharifian S, Harasek M (2015) Chem Eng Trans 45:409–414

    Google Scholar 

  20. Sharifian S, Harasek M (2015) Chem Eng Trans 45:1003–1008

    Google Scholar 

  21. Ci L, Xu Z, Wang L, Gao W, Ding F (2008) Nano Res 1:116–122

    Article  CAS  Google Scholar 

  22. Lee C, Wei X, Kysar JW, Hone J (2008) Science 321:385–388

    Article  CAS  PubMed  Google Scholar 

  23. Novoselov KS, Geim AK, Morozov S (2004) Science 306:666–669

    Article  CAS  PubMed  Google Scholar 

  24. Geim AK, Novoselov KS (2007) Nat Mater 6:183–191

    Article  CAS  PubMed  Google Scholar 

  25. Morozov S, Novoselov K, Katsnelson M (2008) Phys Rev Lett 100:016602

    Article  CAS  PubMed  Google Scholar 

  26. Geim AK (2009) Science 324:1530–1534

    Article  CAS  PubMed  Google Scholar 

  27. Ratinac KR, Yang W, Ringer SP, Braet F (2010) Environ Sci Technol 44:1167–1176

    Article  CAS  PubMed  Google Scholar 

  28. Esrafili MD, Saeidi N (2017) Chem Phys Lett 671:49–55

    Article  CAS  Google Scholar 

  29. Esrafili MD, Nurazar R (2014) Sur Sci 626:44–48

    Article  CAS  Google Scholar 

  30. Esrafili MD, Saeidi N (2015) Phys E 74:382–387

    Article  CAS  Google Scholar 

  31. Esrafili MD, Nematollahi P, Abdollahpour H (2016) Appl Sur Sci 378:418–425

    Article  CAS  Google Scholar 

  32. Esrafili MD, Nematollahi P, Nurazar R (2016) Superlatt Microstruct 92:60–67

    Article  CAS  Google Scholar 

  33. Esrafili MD, Nurazar R (2014) Comput Mat Sci 92:172–177

    Article  CAS  Google Scholar 

  34. Tang Y, Liu Z, Dai X, Yang Z, Chen W, Lu Z (2014) Appl Surf Sci 308:402

    Article  CAS  Google Scholar 

  35. Lin S, Ye X, Huang J (2015) Phys Chem Chem Phys 17:888

    Article  CAS  PubMed  Google Scholar 

  36. Taw fi k SA, Cui XY, Carter DJ, Stamp fl C (2015) Phys Chem Chem Phys 17:6925

    Article  CAS  Google Scholar 

  37. Davies AG (2004) Organotin chemistry, 2nd edn. Wiley-VCH, Weinheim

    Book  Google Scholar 

  38. Song H, Zhang L, He C, Qu Y, Tian Y, Lv Y (2011) J Mater Chem 21:5972

    Article  CAS  Google Scholar 

  39. Zhou Q, Wang C, Fu Z, Tang Y, Zhang H (2014) Comput Mater Sci 83:398–402

    Article  CAS  Google Scholar 

  40. Krasheninnikov AV, Lehtinen PO, Foster AS (2009) Phys Rev Lett 102

  41. Li F, Zhao J, Chen Z (2012) J Phys Chem C 116:2507–2514

    Article  CAS  Google Scholar 

  42. Wang X, Li X, Zhang L, Yoon Y, Weber PK (2009) Science 324:768–771

    Article  CAS  PubMed  Google Scholar 

  43. Reddy ALM, Srivastava A, Gowda SR, Gullapalli H (2010) ACS Nano 4:6337–6342

    Article  CAS  PubMed  Google Scholar 

  44. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  45. Andzelm J, Kolmel C (1995) J Chem Phys 103:9312–9320

    Article  CAS  Google Scholar 

  46. Gan LH, Zhao JQ (2009) Phys E 41:1249–1252

    Article  CAS  Google Scholar 

  47. Boys SF, Bernardi F (1970) Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  48. Ma L, Zhang JM, Xu KW, Ji V (2015) Appl Surf Sci 343:121–127

    Article  CAS  Google Scholar 

  49. Zhang T, Xue Q, Shan M, Jiao Z (2012) J Phys Chem C 116:19918–19924

    Article  CAS  Google Scholar 

  50. Wu M, Cao C, Jiang J (2010) N J Phys 12:063020

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank all chemistry teachers for scientific supports.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Halimeh Rajabzadeh, Meysam Najafi or Milad Janghorban Lariche.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kahkhaie, S.R., Rajabzadeh, H., Najafi, M. et al. Oxidation of Methylene via Sn-adsorbed Boron Nitride Nanocage (B30N30): DFT Investigation. Silicon 11, 995–1000 (2019). https://doi.org/10.1007/s12633-018-9913-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-018-9913-1

Keywords

Navigation