Skip to main content
Log in

Silicon Nanowires as Sensory Material for Surface-Enhanced Raman Spectroscopy

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

This paper shows steps for silicon nanowires substrates synthesis in detail. The research is focused on experimental techniques optimization while the targeted application was a fabrication of highly sensitive substrates for surface-enhanced Raman spectroscopy (SERS). Horizontal silicon nanowires on top of two-inch wafers were obtained by vapour-liquid-solid growth inside the low-pressure chemical vapour deposition reaction tube. The silicon nanowires morphology was monitored by scanning electron microscope after a short and long growth period which defined an adequate deposition time for SERS applications. Surface-enhanced Raman spectroscopy features were tested on silver nanoparticles decorated substrates and the detection concentration limit of 10− 9 M of rhodamine 6G molecules was reached. Raman spectroscopy showed that the 532 nm laser excitation powers of less than 4 mW (∼0.57 kW/cm2) do not widen the phonon peak or shift its frequency and the nanostructure distribution parameter of 3.7 nm was calculated. The horizontally placed Ag decorated nanowires are proved to be sensitive substrates for surface-enhanced Raman spectroscopy only if the silicon nanowires thickness, length, volume density as well as metal nanoparticle size and distribution are carefully designed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Jeanmaire DL, Van Duyne RP (1977) J Electroanal Chem 84:1–120. https://doi.org/10.1016/S0022-0728(77)80224-6

    Article  CAS  Google Scholar 

  2. Kahraman M, Mullen E, Korkmaz A, Hogiu SW (2017) Nanophotonics 6(5):831–852. https://doi.org/10.1515/nanoph-2016-0174

    Article  CAS  Google Scholar 

  3. Kneipp K (2007) Phys Today 60(11):40. https://doi.org/10.1063/1.2812122

    Article  CAS  Google Scholar 

  4. Nie S, Emory SR (1997) Science 275:1102–1106. https://doi.org/10.1126/science.275.5303.1102

    Article  CAS  PubMed  Google Scholar 

  5. Namdari P, Daraee H, Eatemadi A (2016) Nanoscale Res Lett 11:406. https://doi.org/10.1186/s11671-016-1618-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Picraux ST, Dayeh SA, Manandhar P, Perea DE, Choi SG (2010) JOM 62(4):35–43. https://doi.org/10.1007/s11837-010-0057-z

    Article  CAS  Google Scholar 

  7. Rashid JIA, Abdullah J, Yusof NA, Hajian R (2013) J Nanomaterials 328093:16. https://doi.org/10.1155/2013/328093

    Article  CAS  Google Scholar 

  8. Seo D, Lee J, Kim SW, Kim I, Na J, Hong M-H, Choi H-J (2015) Nanoscale Res Lett 10:190. https://doi.org/10.1186/s11671-015-0893-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cao YY, Yang GW (2012) J Phys Chem C 116:6233–6238. https://doi.org/10.1021/jp210659g

    Article  CAS  Google Scholar 

  10. Kern W (1990) J Electrochem Soc 137 (6):1887–1892. https://doi.org/10.1149/1.208682

    Article  CAS  Google Scholar 

  11. Zheng M, McDowell D, Panaitescu E, Davydov AV, Upmanyu M, Menon L (2013) J Mater Chem C 1(7294):7294–7302. https://doi.org/10.1039/c3tc31776e

    Article  CAS  Google Scholar 

  12. Kumar R, Mavi HS, Shukla AK, Vankar VD (2007) J Appl Phys 101:064315. https://doi.org/10.1063/1.2713367

    Article  CAS  Google Scholar 

  13. Richter RH, Wang ZP, Ley L (1981) Solid State Commun 39(625):625–629. https://doi.org/10.1016/0038-1098(81)90337-9

    Article  CAS  Google Scholar 

  14. Fauchet PH, Campbell IH (1988) Critical Rev Solid State Mat Sci 14:s79–s101. https://doi.org/10.1080/10408438808244783

    Article  Google Scholar 

  15. Ristic D, Ivanda M, Furic K (2009) J Mole Struct 924–926:291–293. https://doi.org/10.1016/j.molstruc.2008.10.054

    Article  CAS  Google Scholar 

  16. Doerk GS, Carraro C, Maboudian R (2009) Phys Rev B 80(7):073306. https://doi.org/10.1103/PhysRevB.80.073306

    Article  CAS  Google Scholar 

  17. Qi H, Rendell RW, Glembocki OJ, Prokes SM (2012) J Nanomaterials 946868:9. https://doi.org/10.1155/2012/946868

    Article  CAS  Google Scholar 

  18. Spizzirri PG, Fang J-H, Rubanov S, Gauja E, Prawer S (2010) cond-mat.mtrl-sci arXiv:1002.2692, Nano-Raman spectroscopy of silicon surfaces

Download references

Acknowledgments

The authors would like to thank ‘Zaklada hrvatske akademije znanosti i umjetnosti’ for the financial support in the frame of the project ‘Površinski pojačano Ramanovo raspršenje za razvoj biokemijskih senzora, 2015’.

This work has been partially supported by SAFU, project263 KK.01.1.1.01.0001., and by Croatian Science Foundation under the project (IP-2014-09-7046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mile Ivanda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gebavi, H., Ristić, D., Baran, N. et al. Silicon Nanowires as Sensory Material for Surface-Enhanced Raman Spectroscopy. Silicon 11, 1151–1157 (2019). https://doi.org/10.1007/s12633-018-9906-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-018-9906-0

Keywords

Navigation