Skip to main content
Log in

TFET on Selective Buried Oxide (SELBOX) Substrate with Improved ION/IOFF Ratio and Reduced Ambipolar Current

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

This paper proposes a new structure for tunnel field effect transistor on a selective buried oxide (SELBOX) substrate. An extensive simulation study and a comparative performance analysis of the key characteristics of the proposed geometry of TFET on SELBOX substrate and the conventional fully depleted silicon-on-insulator (FDSOI) TFETs have been done. It has been found that SELBOX can significantly reduce the OFF current, without affecting the ON current of the device; hence, higher order of ION/IOFF ratio (1010) can be obtained prevailing the advantages of FDSOI TEFTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Knoch J, Mantl S, Appenzeller J (2007) Impact of the dimensionality on the performance of tunneling FETs: bulk versus one-dimensional devices. Solid State Electron 51:572–578

    Article  CAS  Google Scholar 

  2. Loan SA, Qureshi S et al (2010) A novel partial-ground-plane-based MOSFET on selective buried oxide: 2-D simulation study 57:671–680

  3. Young KK (1989) Short-channel effect in fully depleted SOI MOSFETs. Electron Devices IEEE Trans Electron Devices 36:2–5

    Google Scholar 

  4. Adan AO, Higashi K (2001) OFF-state leakage current mechanisms in Bulk Si and SOI MOSFETs and their impact on CMOS ULSIs standby current. IEEE Trans Electron Devices 48:2050–2057

    Article  Google Scholar 

  5. Vishnoi R, Kumar MJ (2014) Compact analytical model of dual material gate tunneling field-effect transistor using interband tunneling and channel transport. IEEE Trans Electron Devices 61:1936–1942

    Article  CAS  Google Scholar 

  6. Chaudhry A, Kumar MJ (2004) Controlling short-channel effects in deep-submicron SOI MOSFETs for improved reliability: a review. IEEE Trans Device Mater Reliab 4:99–109

    Article  Google Scholar 

  7. Choi JY, Fossum JG (1991) Analysis and control of floating-body bipolar effects in fully depleted submicrometer SOI MOSFETs. IEEE Trans Electron Devices 38:1384–1391

    Article  Google Scholar 

  8. Loan SA, Qureshi S (2010) A novel partial-ground-plane-based MOSFET on selective buried oxide: 2-D simulation study. IEEE Trans Electron Devices 57:671–680

    Article  Google Scholar 

  9. Pal A, Sachid AB, Gossner H, Rao VR (2011) Insights into the design and optimization of tunnel-FET devices and circuits. IEEE Trans Electron Devices 58:1045–1053

    Article  CAS  Google Scholar 

  10. Choi WY, Park B, Lee JD, Liu TK (2007) Tunneling Field-Effect Transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec. IEEE Electron Device Lett 28:743–745

    Article  CAS  Google Scholar 

  11. Nirschl T, Henzler S, Fischer J (2006) Scaling properties of the tunneling field effect transistor (TFET): device and circuit. Solid State Electron 50:44–51

    Article  CAS  Google Scholar 

  12. Kumar MJ, Janardhanan S (2013) Doping—less tunnel field effect transistor: design and investigation. IEEE Trans Electron Devices 60:3285–3290

    Article  CAS  Google Scholar 

  13. Koswatta SO, Lundstrom MS, Nikonov DE (2009) Performance comparison between p-i-n tunneling transistors and conventional MOSFETs. IEEE Trans Electron Devices 56:456–465

    Article  CAS  Google Scholar 

  14. Boucart K, Ionescu AM (2007) Double-gate tunnel FET with high-k gate dielectric. IEEE Trans Electron Devices 54:1725–1733

    Article  CAS  Google Scholar 

  15. Sivasankaran K, Mallick PS (2013) A comparative study of radio frequency stability performance of double gate MOSFET and double gate tunnel FET. In: Proceedings of the 2013 international conference Green computing, communication, conservation of energy ICGCE 2013, pp 220–224

  16. Pal A, Dutta AK (2016) Analytical drain current modeling of double-gate tunnel field-effect transistors. IEEE Trans Electron Devices 63:3213–3221

    Article  CAS  Google Scholar 

  17. Sahoo S, Panda S, Mishra GP, Dash S (2016) Tunneling path based analytical drain current model for double gate Tunnel FET (DG-TFET). In: International conference on emerging trends in electrical electronics & sustainable energy systems 2016, pp 337–341

  18. Bhushan B, Nayak K, Rao VR (2012) DC compact model for SOI tunnel field-effect transistors. IEEE Trans Electron Devices 59:2635–2642

    Article  CAS  Google Scholar 

  19. Goswami R, Bhowmick B (2016) Circular gate tunnel FET: optimization and noise analysis. Procedia Comput Sci 93:125–131

    Article  Google Scholar 

  20. Goswami R, Bhowmick B, Baishya S (2015) Electrical noise in Circular Gate Tunnel FET in presence of interface traps. Superlattices Microstruct 86:342–354

    Article  CAS  Google Scholar 

  21. Balamurugan NB, Priya GL, Manikandan S, Srimathi G (2016) Analytical modeling of dual material gate all around stack architecture of tunnel FET. In: Proceedings of the IEEE international conference on VLSI design 2016–March, pp 294–299

  22. Beneventi GB, Gnani E, Gnudi A et al (2014) Dual-metal-gate InAs tunnel FET with enhanced turn-on steepness and high on-current. IEEE Trans Electron Devices 61:776–784

    Article  CAS  Google Scholar 

  23. Mitra SK, Goswami R, Bhowmick B (2016) A hetero-dielectric stack gate SOI-TFET with back gate and its application as a digital inverter. Superlattices Microstruct 92:37–51

    Article  CAS  Google Scholar 

  24. Ahish S, Sharma D, Vasantha MH, Kumar YBN (2016) Design and analysis of novel InSb/Si Heterojunction double gate tunnel field effect transistor. In: 2016 IEEE Computer society annual symposium on VLSI, pp 105–109

  25. Sant S, Schenk A (2015) Band-offset engineering for GeSn-SiGeSn hetero tunnel FETs and the role of strain. IEEE J Electron Devices Soc 3:164–175

    Article  CAS  Google Scholar 

  26. Mojumder NN, Roy K (2009) Band-to-band tunneling ballistic nanowire FET: circuit-compatible device modeling and design of ultra-low-power digital circuits and memories. IEEE Trans Electron Devices 56:2193–2201

    Article  Google Scholar 

  27. Lv Y, Huang Q, Wang H et al (2016) A numerical study on graphene nanoribbon heterojunction dual-material gate tunnel FET. IEEE Electron Device Lett 37:1354–1357

    Article  Google Scholar 

  28. Sentaurus Device Manual

  29. Schenk A (1993) Rigorous theory and simplified model of the band-to-band tunneling in silicon. Solid State Electron 36:19–34

    Article  CAS  Google Scholar 

  30. Tsividis Y, McAndrew C (2010) Operation and modeling of the MOS transistor. Oxford University Press, London

    Google Scholar 

  31. Mookerjea S, Krishnan R, Datta S, Narayanan V (2009) Effective capacitance and drive current for tunnel FET (TFET) CV/I estimation. IEEE Trans Electron Devices 56:2092–2098

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhruvajyoti Barah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barah, D., Singh, A.K. & Bhowmick, B. TFET on Selective Buried Oxide (SELBOX) Substrate with Improved ION/IOFF Ratio and Reduced Ambipolar Current. Silicon 11, 973–981 (2019). https://doi.org/10.1007/s12633-018-9894-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-018-9894-0

Keywords

Navigation