pp 1–11 | Cite as

The Photoactivity and Electrochemical Behavior of Porous Titania (TiO2) in Simulated Saliva for Dental Implant Application

  • A. M. Fathi
  • O. S. Shehata
  • A. M. Abdel-Karim
Original Paper


Titanium and its alloys are considered one of the most important biomaterials that have been used. The existence of TiO2 on the surface increases the adsorption of bio-compatible calcium and phosphate ions. So, this article deals with the formation of porous titania, TiO2, film on Ti implant, to give a comprehensive account of using it as a photoactive biomaterial in simulated saliva solution of different pH values (7.4 and 5.4) and with various concentrations of fluoride ions. Different techniques such as polarization, electrochemical impedance spectroscopy (EIS), photochemical measurements and electron diffraction X-ray, EDX were used. The oxide layer and the adsorbed layer were discovered by the scanning electron microscopy, SEM. The film appearances under various environments and the adsorption of Ca2+ and PO\(_{4}^{3-}\) were described. The fitted impedance data assisted in explaining the oxide film nature and the adsorption phenomena occurred on its surface. The results have shown that the existence of oxide layer on the Ti implant decreases the corrosion rate of the implant in the corrosive fluoride ion media as compared to the non-anodized implant. The photoactivity of dental implants was recognized and the performance of the oxide film increases after 2 h of UV- illumination which is proved by the improvement of Rhodamine 6G decomposition.


Dental implant Porous titania Photosensitizer Electrochemical techniques 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported financially by National Research Centre, Egypt, Grant no. P100904.


  1. 1.
    Elagli K, Traisnel M, Hildebrand HF (1993) Electrochim Acta 38:1769CrossRefGoogle Scholar
  2. 2.
    Hanawa T, Asami K, Asaoka K (1998) J Biomed Mater Res 40(4):530–538CrossRefGoogle Scholar
  3. 3.
    Toumelin-Chemia F, Rouelle F, Burdairon G (1996) J Dent 24:109CrossRefGoogle Scholar
  4. 4.
    Soto-Alvaredo J, Blanco E, Bettmer J, Hevia D, Sainz RM, Cháves CL, Sánchez C, Llopis J, Sanz-Medel A, MontesBayon M (2014) Metallomics 6:1702–1708CrossRefGoogle Scholar
  5. 5.
    Dillon CP (1998) Mater Perform 7:69Google Scholar
  6. 6.
    Al-Mayouff AM, Al-Swayih AA, Al-Mobarak NA, Al-Jabab AS (2004) Mater Chem Phys 86:320CrossRefGoogle Scholar
  7. 7.
    Karthega M, Tamilselvi S, Rajendran N (2006) Trends Biomater Artif Organs 20(1):31–34Google Scholar
  8. 8.
    Reclaru L, Meyer JM (1998) Biomaterials 19:85CrossRefGoogle Scholar
  9. 9.
    Schutz RW, Thomas DE (1987) Corrosion of titanium and titanium alloys. In: Metal handbook, Corrosion 9th edn, vol 13. ASM International, pp 669–706Google Scholar
  10. 10.
    Barao VA, Mathew MT, Assunção WG, Yuan JC-C, Wimmer MA, Sukotjo C (2012) Clin Oral Implants Res 23:1055–1062CrossRefGoogle Scholar
  11. 11.
    Licausi M, Igual Muñoz A, Borráo V (2013) J Phys D: Appl Phys 46:404003CrossRefGoogle Scholar
  12. 12.
    Strietzel R, Hosch A, Kalbfleisch H (1998) Biomaterials 19:1495CrossRefGoogle Scholar
  13. 13.
    Busch P, Strietzel R (1999) Deut Zahnaerztl Z 54:653Google Scholar
  14. 14.
    de Mele Lorenzo MF, Cortizo MC (2000) J Appl Electrochem 30:95CrossRefGoogle Scholar
  15. 15.
    Yang B, Uchida M, Kim H-M, Zhang X, Kokubo T (2004) Biomaterials 25:1003CrossRefGoogle Scholar
  16. 16.
    Song W-H, Jun Y-K, Han Y, Hong S-H (2004) Biomaterials 25:3341CrossRefGoogle Scholar
  17. 17.
    Oh H-J, Lee J-H, Jeong Y, Kim Y-J, Chi C-S (2005) Surf Coat Technol 198:247CrossRefGoogle Scholar
  18. 18.
    Deborah JH, Robert MU, Robin P, Thomas MT, Anastasia KS, Joshua JJ (2017) J Biomed Mater Res Part B Appl Biomater 105:283CrossRefGoogle Scholar
  19. 19.
    Li P, Ohtsuki C, Kokubo T, Nakanishi K, de Groot K (1994) J Biomed Mater Res 28:7CrossRefGoogle Scholar
  20. 20.
    Uchida M, Kim H-M, Kokubo T, Fujibayashi S, Nakamura T (2003) J Biomed Mater Res A 64:164CrossRefGoogle Scholar
  21. 21.
    Han Y, Hong SH, Xu KW (2002) Surf Coat Technol 154:314–318CrossRefGoogle Scholar
  22. 22.
    Huang P, Xu KW, Han Y (2002) Biomolecul Eng 19:255–261CrossRefGoogle Scholar
  23. 23.
    Nanci A, Wuest JD, Peru L, Brunet P, Sharma V, Zalzal S, McKee MD (1998) J Biomed Mater 40:237–242CrossRefGoogle Scholar
  24. 24.
    Hernández-Montes V, Betancur-Henao CP, Santa-Marín JF (2017) DYNA 84(200):261–270CrossRefGoogle Scholar
  25. 25.
    Aziz-Kerrzo M, Conroy KG, Fenelon AM, Farrell ST, Breslin CB (2001) Biomaterials 22:1531CrossRefGoogle Scholar
  26. 26.
    Badawy WA, Fathi AM, El-Sherief RM, Fadl-Allah SA (2009) J Alloys Compd 475:911–916CrossRefGoogle Scholar
  27. 27.
    Hamlekhan A, Takoudis C, Sukotjo C, Mathew MT, Virdi A, Yassar RS, Shokuhfar T (2014) J Nanotech Smart Mater 1:1–14CrossRefGoogle Scholar
  28. 28.
    Fadl-Allah SA, Quahtany M, El-Shenawy NS (2013) J Biomater Nanobiotechnol 4:74–83CrossRefGoogle Scholar
  29. 29.
    Souza MEP, Ballester M, Freire CMA (2007) Surf Coat Technol 201:7775–7780CrossRefGoogle Scholar
  30. 30.
    Ding HM, Ram MK, Nicolini C (2001) J Nanosci Nanotechnol 1:207–213CrossRefGoogle Scholar
  31. 31.
    Wu TX, Liu GM, Zhao JC, Hidaka H, Serpone N (1999) J Phys Chem B 103:4862–4867CrossRefGoogle Scholar
  32. 32.
    Tatsuma T, Takeda S, Saitoh S, Ohko Y, Fujishima A (2003) Electrochem Commun 5:793–796CrossRefGoogle Scholar
  33. 33.
    Fadl-Allah SA, El-Sherief RM, Badawy WA (2008) J Appl Electrochem 38:1459–1466CrossRefGoogle Scholar
  34. 34.
    Boukamp BA (1986) Solid State Ion 20:31CrossRefGoogle Scholar
  35. 35.
    Zhang Z, Chen S, Li Y, Li S, Wang L (2009) Corros Sci 51:291CrossRefGoogle Scholar
  36. 36.
    Saini M, Singh Y, Arora P, Arora V, Jain K (2015) World J Clin Cases 3:52–57CrossRefGoogle Scholar
  37. 37.
    Yoshida K, Kamada K, Sato K, Hatada R, Baba K, Atsuta M (1999) J Biomed Mater Res 48:778–785CrossRefGoogle Scholar
  38. 38.
    Sul Y, Johansson CB, Jeong Y, Albrektsson T (2001) Med Eng Phys 23:329–346CrossRefGoogle Scholar
  39. 39.
    Reclaru L, Meyer JM (1998) Biomaterials 19:85CrossRefGoogle Scholar
  40. 40.
    Sakairi M, Kinjyo M, Kikuchi T (2011) Electrochim Acta 56:1786–1791CrossRefGoogle Scholar
  41. 41.
    Golvano I, Garcia I, Conde A, Tato W, Aginagalde A (2015) J Mech Behavior Biomater 49:186–196CrossRefGoogle Scholar
  42. 42.
    Nakagawa M, Matsuya S, Shiraishi T, Ohta M (1999) J Dental Res 78(9):1568–1572CrossRefGoogle Scholar
  43. 43.
    Lorenzetti M, Pellicer E, Sort J, Baró MD, Kovač J, Novak S, Kobe S (2014) Materials 7:180–194CrossRefGoogle Scholar
  44. 44.
    Hori N, Ueno T, Suzuki T et al (2010) Int J Oral Maxillofac Implants 25(1):49–62Google Scholar
  45. 45.
    Smeets R, Stadlinger B, Schwarz F, Beck-Broichsitter B, Jung O, Precht C, Kloss F, Gröbe A, Heiland M, Ebker T (2016) BioMed Res Intern 2016:16. Article ID 6285620CrossRefGoogle Scholar
  46. 46.
    Hashimoto K, Irie H, Fujishima A (2005) Jpn J Appl Phys 44(12):8269–8285CrossRefGoogle Scholar
  47. 47.
    Carolineg K (2010) Effects of UV-exposure of titanium-based dental implant materials. Master’s Thesis, Göteborg, SwedenGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Physical Chemistry DepartmentNational Research Centre (Scopus affiliation ID 60014618)GizaEgypt

Personalised recommendations