pp 1–9 | Cite as

Synthesis, Structure and Properties of MgO-Al2O3-SiO2-B2O3 Transparent Glass-Ceramics

  • Lei Han
  • Jun Song
  • Qian Zhang
  • Tao-yong Liu
  • Zhi-wei Luo
  • An-xian Lu
Original Paper


MgO-Al2O3-SiO2-B2O3 system transparent glass-ceramics have been prepared by conventional melt-quenching method followed by controlled crystallization, and their properties were also studied. The crystalline phases, crystal morphology, physical and light transmittance properties of glass-ceramics were characterized by DSC, XRD, FTIR, FE-SEM, thermo-mechanical analyzer and UV spectrophotometer. The results indicated that the crystal phase μ-cordierite turned to α-cordierite with increase in heat treatment temperature, and cordierite nanocrystals with size less than 50 nm were precipitated from the matrix glass, which was confirmed by the X-ray and SEM results. It is observed that the main elements in the glass-ceramics are uniformly distributed from EDS element distribution maps. The light transmittance of glass-ceramics obviously decreases with rising of crystallization time. All things considered, when the parent glass was crystallized at 1045 °C for 1 h, the prepared glass-ceramics possesses good light transmittance (76 %), lower density (2.498 g/cm3), lower thermal expansion coefficient (2.469 × 10− 6/°C), higher bending strength (167 MPa), compressive strength (376 MPa) and higher Vickers hardness (7.8 GPa). The combination of excellent mechanical, thermal and optical properties makes this family of transparent glass-ceramics showing potential applications.


Glass-ceramics Crystallization Heat treatment Light transmittance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work has been supported by the National Nature Science Foundation of China (No. 51672310) and the Project of Technology Promotion and Industrialization for key basic Materials in China (No. 2017YFB0310200).


  1. 1.
    Budd MI (1993) Sintering and crystallization of a glass powder in the MgO-Al2O3-SiO2-ZrO2 system. J Mater Sci 28:1007–1014CrossRefGoogle Scholar
  2. 2.
    Chenu S, Véron E, Genevois C, Matzen G, Cardinal T, Etienne A, Massiot D, Allix M (2014) Tuneable nanostructuring of highly transparent zinc gallogermanate glasses and glass-ceramics. Adv Opt Mater 2:364–372CrossRefGoogle Scholar
  3. 3.
    Wu BT, Zhou SF, Qiu JR, Peng MY, Yang LY, Jiang XW, Zhu CS (2006) Transparent Ni2+-Doped MgO-Al2O3-SiO2 glass ceramics with broadband infrared luminescence. Chin Phys Lett 23:2778–2781CrossRefGoogle Scholar
  4. 4.
    Khani V, Alizadeh P, Shakeri MS (2013) Optical properties of transparent glass-ceramics containing lithium-mica nanocrystals: Crystallization effect. Mater Res Bull 48:3579–3584CrossRefGoogle Scholar
  5. 5.
    Ghasemzadeh M, Nemat A, Baghshahi S (2012) Effects of nucleation agents on the preparation of transparent glass-ceramics. J Eur Ceram Soc 32:2989–2994CrossRefGoogle Scholar
  6. 6.
    Loiko PA, Dymshits OS, Alekseeva IP, Zhilin AA, Tsenter MY, Vilejshikova EV, Bogdanov KV, Mateos X, Yumashev KV (2016) Transparent glass-ceramics with (Eu3+, Yb3+): YNbO4 nanocrystals: Crystallization, structure, optical spectroscopy and cooperative upconversion. J Lumin 179:64–73CrossRefGoogle Scholar
  7. 7.
    Li J, Mei YZ, Gao C, Ren F, Lu AX (2011) Variation of luminescence properties of Na2O-CaO-SiO2: Nd3+ glass with crystallinity. J Non-Cryst Solids 357:1736–1740CrossRefGoogle Scholar
  8. 8.
    Li CY, Su Q, Wang SB (2002) Multi-color long-lasting phosphorescence in Mn2+-doped ZnO-B2O3-SiO2 glass-ceramics. Mater Res Bull 37:1443–1449CrossRefGoogle Scholar
  9. 9.
    Abdelghany AM, Margha FH (2016) New transparent nano-glass-ceramics of SiO2 and CaF2 doped SrO-B2O3 glass. Silicon 8:563–571CrossRefGoogle Scholar
  10. 10.
    Bykov AB, Sharonov MY, Petricevic V, Popov I, Isaacs LL, Steiner J, Alfano RR (2006) Synthesis and characterization of Cr4+-doped CaO-GeO2-Li2O-B2O3(Al2O3) transparent glass-ceramics. J Non-Cryst Solids 352:5508–5514CrossRefGoogle Scholar
  11. 11.
    Jeong ED, Borse PH, Lee JS, Ha MG, Pak HK, Komatsu T, Kim HG (2006) Second harmonic generation and fabrication of transparent K2O-Na2O-Nb2O5-TeO2 glass-ceramics. J Ind Eng Chem 12:790–794Google Scholar
  12. 12.
    Kolobkova EV, Tagil’tseva NO, Lesnikov PA (2010) Specific features of the formation of oxyfluoride glass-ceramics in the SiO2-PbF2-CdF2-ZnF2-Al2O3-Er (Eu, Yb) F3 system. Glass Phys Chem 36:317–324CrossRefGoogle Scholar
  13. 13.
    Zanotto ED (2010) A bright future for glass-ceramics. Am Ceram Soc Bull 89:19–27Google Scholar
  14. 14.
    Watanabe K, Giess EA (1985) Coalescence and crystallization in powdered high-cordierite (2MgO⋅2A12O3 ⋅5SiO2) glass. J Am Ceram Soc 68:C-102–C-103Google Scholar
  15. 15.
    Hwang SP, Wu JM (2001) Effect of composition on microstructural development in MgO-Al2O3-SiO2 glass-ceramics. J Am Ceram Soc 84:1108–1112CrossRefGoogle Scholar
  16. 16.
    Son YB, Kim CH, Jang SD, Liu J, Sarikaya M, Aksay IA (1994) Crystallization behavior of cordierite-based glass with excess SiO2 and Al2O3 at initial stage. Jpn J Appl Phys 33:1101– 1108CrossRefGoogle Scholar
  17. 17.
    Banjuraizah J, Mohamad H, Ahmad ZA (2011) Synthesis and characterization of x MgO-1.5Al2O3-5SiO2 (x = 2.6–3.0) system using mainly talc and kaolin through the glass route. Mater Chem Phys 129:910–918CrossRefGoogle Scholar
  18. 18.
    Zhou SF, Dong HF, Zeng HP, Wu BT, Zhu B, Yang HC, Xu SQ, Wan ZY, Qiu JR (2007) Broadband near-infrared emission from transparent Ni2+-doped silicate glass ceramics. J Appl Phys 102:063106–1-063106-4Google Scholar
  19. 19.
    Gawronski A, Patzig C, Hoche T, Russel C (2015) Effect of Y2O3 and CeO2 on the crystallisation behaviour and mechanical properties of glass-ceramics in the system MgO/Al2O3/SiO2/ZrO2. J Mater Sci 50:1986–1995CrossRefGoogle Scholar
  20. 20.
    Wu JM, Hwang SP (2015) Effects of (B2O3, P2O5) additives on microstructural development and phase-transformation kinetics of stoichiometric cordierite glasses. J Am Ceram Soc 83:1259–1265CrossRefGoogle Scholar
  21. 21.
    Hwang SP, Wu JM (2001) Effect of composition on microstructural development in MgO-Al2O3-SiO2glass-ceramics. J Am Ceram Soc 84:1108–1112CrossRefGoogle Scholar
  22. 22.
    Koralay H, Cavdar S, Aksan MA (2010) Kinetics of non-isothermal crystallization of Bi3Sr2Ca2Cu3− x SnxO10+δ glassceramics. Physica B: Condens Matter 405:4801–4805CrossRefGoogle Scholar
  23. 23.
    Xu XJ, Ray CS, Day DE (1991) Nucleation and crystallization of Na2 O ⋅2CaO⋅3SiO2 glass by differential thermal analysis. J Am Ceram Soc 74:909–914CrossRefGoogle Scholar
  24. 24.
    McMillan PW (1964) Glass-ceramics. Academic, New YorkGoogle Scholar
  25. 25.
    Wisniewski W, Rüssel C (2014) Analysis of the cordierite X-phase and phase transformation by electron backscatter diffraction (EBSD). J Non-Cryst Solids 403:124–129CrossRefGoogle Scholar
  26. 26.
    Huang SX, Li S, Wu FN, Yue YL (2015) Effect of B2O3 on structure and properties of CaO-MgO-B2O3-Al2O3-SiO2 glasses. J Inorg Organomet Polym Mater 25:816–822CrossRefGoogle Scholar
  27. 27.
    Pal D, Chakraborty AK, Sen S, Sen SK (1996) The synthesis, characterization and sintering of sol-gel derived cordierite ceramics for electronic applications. J Mater Sci 31:3995–4005CrossRefGoogle Scholar
  28. 28.
    Petrović R, Janacković D, Zec S, Drmanić S, Kostić-Gvozdenović LJ (2001) Phase-transformation kinetics in triphasic cordierite gel. J Mater Res 16:451–458CrossRefGoogle Scholar
  29. 29.
    Huang C, Behrman EC (1991) Structure and properties of calcium aluminosilicate glasses. J Non-Cryst Solids 128:310–321CrossRefGoogle Scholar
  30. 30.
    Yu QC, Yan CP, Deng Y, Feng YB, Liu DC, Yang B (2015) Effect of Fe2O3 on non-isothermal crystallization of CaO-MgO-Al2O3-SiO2 glass. Trans Nonferrous Met Soc China 25:2279–2284CrossRefGoogle Scholar
  31. 31.
    Saikia BJ, Parthasarathy G (2010) Fourier transform infrared spectroscopic characterization of kaolinite from Assam and Meghalaya, Northeastern India. J Mod Phys 1:206–210CrossRefGoogle Scholar
  32. 32.
    Jha K, Jayasimhadri M (2016) Spectroscopic investigation on thermally stable Dy3+ doped zinc phosphate glasses for white light emitting diodes. J Alloys Compd 688:833–840CrossRefGoogle Scholar
  33. 33.
    Yu LP, Xiao HN, Cheng Y (2008) Influence of magnesia on the structure and properties of MgO-Al2O3-SiO2-F glass-ceramics. Ceram Int 34:63–68CrossRefGoogle Scholar
  34. 34.
    Kondratowicz T (2007) Structural changes in sodium-calcium-silicate glass after adding Si3N4. Opt Appl 37:41–50Google Scholar
  35. 35.
    Dittmer M, Yamamoto CF, Bocker C, Rüssel C (2011) Crystallization and mechanical properties of MgO/Al2O3/SiO2/ZrO2 glass-ceramics with and without the addition of yttria. Solid State Sci 13:2146–2153CrossRefGoogle Scholar
  36. 36.
    Holand W, Beall GH (2012) Glass-ceramic technology, 2nd edn. Wiley, HobokenCrossRefGoogle Scholar
  37. 37.
    Beall GH, Duke DA (1969) Transparent glass-ceramics. J Mater Sci 4:340–352CrossRefGoogle Scholar
  38. 38.
    Krkhanavala MD, Hummel FA (1953) The polymorphism of cordierite. J Am Ceram Soc 12:389–392CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringCentral South UniversityChangshaChina
  2. 2.Key Laboratory of Power Batteries & Relative Materials, Jiangxi ProvinceJiangxi University of Science & TechnologyGanzhouChina

Personalised recommendations