pp 1–8 | Cite as

Study of Undoped and Indium Doped ZnO Thin Films Deposited by Sol Gel Method

  • M. Medjaldi
  • O. Touil
  • B. Boudine
  • M. Zaabat
  • O. Halimi
  • M. Sebais
  • L. Ozyuzer
Original Paper


In this paper, we report the effects of Indium doping concentrations (from 0 to 10wt%) on the structural, morphological, and optical properties of deposited In doped ZnO (IZO) thin films prepared by the sol–gel method through the dip coating technique. X-ray diffraction (XRD) analysis indicates that all ZnO thin films have a polycrystalline nature with a hexagonal wurtzite phase with (002) as a preferential orientation. XRD results demonstrate that the particle size of ZnO decreased with the increase in Indium concentrations. Raman scattering spectra confirmed the wurtzite phase and the presence of intrinsic defects in our samples. Energy dispersive spectroscopy (EDS) and the X-ray photoelectron spectroscopy (XPS) measurements, confirmed the presence of zinc, oxygen and indium elements which is in agreement with XPS results. The photoluminescence (PL) spectra of the films exhibit defects-related visible emission peaks, with intensities differing owing to different concentrations of zinc vacancies. UV–Vis spectrometer measurements show that all the films are highly transparent in the visible wavelength region (≥ 70%) and presented two different absorption edges at about 3.21 eV and 3.7 eV, these may be correspond to the band gap of zinc oxide and indium oxide respectively.


IZO thin films Raman Phonon Transmittance Photoluminescence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Benramache S, Benhaoua B (2012) Superlattices Microstruct 52:807–815CrossRefGoogle Scholar
  2. 2.
    Khomchenko VS, Kryshtab TG, Savin AK, Zavyalova LV, Roshchina NN, Rodionov VE, Lytvyn OS, Kushnirenko VI, Khachatryan VB, Adame JAA (2007) Superlattices Microstruct 42:94–98CrossRefGoogle Scholar
  3. 3.
    Venkatachalam S, Iida Y, Kanno Y (2008) Superlattices Microstruct 44:127–135CrossRefGoogle Scholar
  4. 4.
    Rahmane S, Djouadi MA, Aida MS, Barreau N, Abdallah B (2010) Thin Solid Film 519:5–10CrossRefGoogle Scholar
  5. 5.
    Park SM, Ikegami T, Ebihara K (2005) Jpn J Appl Phys 44:8027–8031CrossRefGoogle Scholar
  6. 6.
    Ciobanu G, Carja G, Apostolescu G, Taraboanta I (2006) Superlattices Microstruct 39:328–333CrossRefGoogle Scholar
  7. 7.
    Chia CH, Makino T, Tamura K, Segawa Y, Kawasaki M, Ohtomo A, Koinuma H (2003) Appl Phys Lett 82:1848–1850CrossRefGoogle Scholar
  8. 8.
    Xu H, Liu Y, Mu R, Shao C, Lu Y, Shen D (2005) Appl Phys Lett 86:123–107Google Scholar
  9. 9.
    Yamada T, Nebiki T, Kishimoto S, Makino H, Awai K, Narusawa T, Yamamoto T (2007) Superlattices Microstruct 42:68–73CrossRefGoogle Scholar
  10. 10.
    Duclère JR, Novotny M, Meaney A, O’Haire R, Mc Glynn E, Henry MO, Mosnier PJ (2005) Superlattices Microstruct 38:397–405CrossRefGoogle Scholar
  11. 11.
    Benzaouk H, Drici A, Mekhnache M, Amara A, Guerione M, bernède JC, Bendjffal H (2012) Superlattices Microstruct 52:594–604CrossRefGoogle Scholar
  12. 12.
    Ma J, Ji F, Ma HI, Li SY (1995) J Vac Sci Technol A13:92–94CrossRefGoogle Scholar
  13. 13.
    Gu XQ, Zhu LP, Cao L, Ye ZZ, He HP, Chu PK (2011) Mater Sci Semicond Process 14:48–51CrossRefGoogle Scholar
  14. 14.
    Teehan S, fstathiadis H, Haldar P (2011) J Alloys Compd 509:1094–1098CrossRefGoogle Scholar
  15. 15.
    Kim D, Yun I, Kim H (2010) Curr Appl Phys 10:459–462CrossRefGoogle Scholar
  16. 16.
    Park J, Lee C, Kim I, Jang S, Lee B (2009) Thin Solid Films 517:4432–4435CrossRefGoogle Scholar
  17. 17.
    Sharma M, Mehra RM (2010) Thin Solid Films 518:3725– 3730CrossRefGoogle Scholar
  18. 18.
    Wang DY, Zhou J, Liu GZ (2009) J Alloys Compd 481:802– 805CrossRefGoogle Scholar
  19. 19.
    Luna-Arredondo EJ, Maldonado A, Asomoza R, Acosta DR, Melendez-Lira MA, de la L. Olvera M (2005) Thin Solid Films 490:132–136CrossRefGoogle Scholar
  20. 20.
    Zi-qiang X, Hong D, Yan L, Hang C (2006) Mater Sci Semiconduct Process 9:132–135CrossRefGoogle Scholar
  21. 21.
    Caglar Y, Ilican S, Caglar M, Yakuphanoglu F (2007) Spectrochim Acta A 67:1113–1119. CrossRefGoogle Scholar
  22. 22.
    Calleja JM, Cardona M (1977) Phys. Rev. B 16:3753. CrossRefGoogle Scholar
  23. 23.
    Umar A, Kim SH, Lee H, Lee N, Hahn YB (2008) J. Phys D: Appl Phys 41:065412. CrossRefGoogle Scholar
  24. 24.
    Fauteux C, Longtin R, Pegna J, Therriault D (2007) Inorg Chem 46:11036–11047CrossRefGoogle Scholar
  25. 25.
    Wagner CD, Riggs WM, Davis LE, Moulder JF (1979) Handbook of X-ray Photoelectron Spectroscopy. Perkin Elmer, Eden Prairie, MNGoogle Scholar
  26. 26.
    Barick KC, Aslam M, Wu J, Dravid VP, Bahadur D (2009) J Mater Res 24:3543–3550CrossRefGoogle Scholar
  27. 27.
    Seo SJ, Jeon JH, Hwang YH, Bae BS (2011) Appl Phys Lett 99:152102. CrossRefGoogle Scholar
  28. 28.
    Ku CJ, Duan ZQ, Reyes PI, Lu YC, Xu Y, Hsueh CL, Garfunkel E (2011) Appl Phys Lett 98:123511. CrossRefGoogle Scholar
  29. 29.
    King PDC, Veal TD, Phys J (2011) Condens Matter 23:334214CrossRefGoogle Scholar
  30. 30.
    Kaul AR, Gorbenko OY, Botev AN, Burova LI (2005) Superlattice Microstruct. 38:272CrossRefGoogle Scholar
  31. 31.
    Zhang SB, Wei SH, Zunger A (2001) Phys. Rev. B 63:075205. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • M. Medjaldi
    • 1
    • 3
  • O. Touil
    • 2
  • B. Boudine
    • 2
  • M. Zaabat
    • 3
  • O. Halimi
    • 2
  • M. Sebais
    • 2
  • L. Ozyuzer
    • 4
  1. 1.Université Abbas Laghrour KhanchelaEl HammaAlgeria
  2. 2.Laboratoire de Cristallographie, Université frères Mentouri ConstantineConstantineAlgeria
  3. 3.Laboratoire des composants actifs et matériaux Université Larbi Ben M’hidi Oum El BouaghiEl BouaghiAlgeria
  4. 4.Izmir Institute of TechnologyIzmirTurkey

Personalised recommendations