pp 1–10 | Cite as

A Study on the Characterization of MASHS Processed Ti-Si-Al System

  • Kian Kasraee
  • Mardali Yousefpour
  • S. A. Tayebifard
Original Paper


Many promising titanium aluminides and silicides could be synthesized in Ti-Si-Al system via mechanically activated self-propagating high-temperature synthesis (MASHS). The influence of mechanical activation and initial composition on phase formation, microstructure and synthesis behavior of mechanically activated Ti-rich mixtures in Ti-Si-Al system is investigated. Results indicate that Al can participate in the reaction and forms Ti3Al and TiAl3 phases beside Ti5Si3 phase by using mechanically activated reactants. Si and Al could be substituted each other in titanium aluminide and silicide to form solid solution of Ti3(Si,Al) and Ti5(Si,Al)3. In Ti-Si-Al system, combustion temperature is increased by increasing Si amount in the system while, ignition temperature is decreased profoundly from 1100 to 800 C by applying mechanical activation prior to reaction and increasing Al in the system. In addition, Mechanical activation prior to synthesis gives rise to narrow grain size distribution and more uniform microstructure in comparison with SHS products.


Titanium aluminide Titanium silicide Self-propagating high-temperature synthesis Mechanical activation Nanocomposites 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Orru R, Cao G, Munir ZA (1999) Metall Mater Trans A 30:1101–1108CrossRefGoogle Scholar
  2. 2.
    Rao KP, Zhou JB (2002) Mater Sci Eng A 338:282–298CrossRefGoogle Scholar
  3. 3.
    Orru R, Cao G, Munir ZA (1999) Chem Eng Sci 54:3349–3355CrossRefGoogle Scholar
  4. 4.
    Rao KP, Zhou JB (2003) Mater Sci Eng A 356:208–218CrossRefGoogle Scholar
  5. 5.
    Bohn R, Klassen T, Bormann R (2001) Acta Mater 49:299–311CrossRefGoogle Scholar
  6. 6.
    Mitra R, Eswara N, Mahajan R (2008) Trans Indian Inst Met 61:427–433CrossRefGoogle Scholar
  7. 7.
    Senkov ON, Cavusoglu M, Fores FH (2001) Mater Sci Eng A 300:85–93CrossRefGoogle Scholar
  8. 8.
    Gerling R, Bartels A, Clemens H, Oehring M, Schimansky F (1997) Acta Mater 45:4057–4066CrossRefGoogle Scholar
  9. 9.
    Sun FH, Cao CX, Kim SE, Lee YT, Yan MG (2001) Metall Mater Trans A 32:1233–1244CrossRefGoogle Scholar
  10. 10.
    Yang WY, Weatherly GC (1996) J Mater Sci 31:3707–3713CrossRefGoogle Scholar
  11. 11.
    Zha M, Wang HY, Li ST, Li SL, Guan QL, Jiang QC (2009) Mater Chem Phys 114:709–715CrossRefGoogle Scholar
  12. 12.
    Das K, Gupta M, Bandyopadhyay A (2006) Mater Sci Eng A 426:147–156CrossRefGoogle Scholar
  13. 13.
    Yeh CL, Teng GS (2007) J Alloy Compd 429:126–132CrossRefGoogle Scholar
  14. 14.
    Charlot F, Gaffet E, Zeghmati B, Bernard F, Niepce JC (1999) Mater Sci Eng A 262:279–288CrossRefGoogle Scholar
  15. 15.
    Mossino P (2004) Ceram Int 30:311–332CrossRefGoogle Scholar
  16. 16.
    Vyasa A, Raob KP, Prasadb YV (2009) J Alloy Compd 475:252–260CrossRefGoogle Scholar
  17. 17.
    Yeh CL, Li RF (2008) Intermetallics 16:64–70CrossRefGoogle Scholar
  18. 18.
    Alman D (2005) Intermetallics 13:572–579CrossRefGoogle Scholar
  19. 19.
    Brain I (1995) Thermochemical data of pure substance. Wiley-VCH Verlag GmbH & Co, KGaA, WeinheimCrossRefGoogle Scholar
  20. 20.
    Lee JH, Lee A, Chen CC (1998) J Mater Res 13:1626–1630CrossRefGoogle Scholar
  21. 21.
    Trambukis J, Munir ZA (1990) Am Ceram Scc 73:1240–1245CrossRefGoogle Scholar
  22. 22.
    Du YJ, Rao KP, Chung JC, Han XD (2000) Metall Mater Trans A 31:763–771CrossRefGoogle Scholar
  23. 23.
    Grigorieva T, Korchagin M, Lyakhov N (2002) KONA 20:144–158CrossRefGoogle Scholar
  24. 24.
    Adrian IC, Villalba GA, Deorsola FA, DeBenedetti D (2008) J Alloy Compd 466:205–207CrossRefGoogle Scholar
  25. 25.
    Guan QL, Wang HY, Li SL, Zhang M, Jiang QC (2008) J Alloy Compd 456:79–84CrossRefGoogle Scholar
  26. 26.
    Wang HY, Lü SJ, Zha M, Li ST, Liu C, Jiang QC (2008) Mater Chem Phys 111:463–468CrossRefGoogle Scholar
  27. 27.
    Morsi K (2012) J Mater Sci 47:68–92CrossRefGoogle Scholar
  28. 28.
    Wu JS, Beaven PA, Wagner R (1990) Scr Metall 24:207–212CrossRefGoogle Scholar
  29. 29.
    Liang YJ, Chen YC (1993) Handbook of mineral thermodynamic. Northeastern Press, ChinaGoogle Scholar
  30. 30.
    Kasraee K, Tayebifard A, Salahi E (2014) Adv Powder Technol 25:885–890CrossRefGoogle Scholar
  31. 31.
    Bowen CR, Derby B (1997) Brit Ceram 96:25–31Google Scholar
  32. 32.
    Jokisaari JR, Bhaduri S, Bhaduri SB (2005) Mater Sci Eng A 394:385–392CrossRefGoogle Scholar
  33. 33.
    Bernard F, Gaffet E (2001) Int J SHS 10:109–132Google Scholar
  34. 34.
    Kasraee K, Tayebifard A, Salahi E (2013) J Mater Eng Perform 22:3742–3748CrossRefGoogle Scholar
  35. 35.
    Wang H, Zha M, Lü S, Wang C, Jiang Q (2010) Solid State Sci 12:1347–1351CrossRefGoogle Scholar
  36. 36.
    Gauthier V, Bernard F, Gaffet E, Gailhanou M, Larpin JP (2002) Intermetallics 10:377–389CrossRefGoogle Scholar
  37. 37.
    Grass C, Vrel D, Gaffet E, Bernard F (2001) J Alloys Compd 314:240–250CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Kian Kasraee
    • 1
  • Mardali Yousefpour
    • 1
  • S. A. Tayebifard
    • 2
  1. 1.Faculty of Materials and Metallurgical EngineeringSemnan UniversitySemnanIran
  2. 2.Semiconductor DepartmentMaterials and Energy Research CenterKarajIran

Personalised recommendations