Advertisement

Silicon

pp 1–9 | Cite as

Evidence of Electrochemical Resistance on Ternary V-C-N Layers

  • J. C. Caicedo
  • W. Aperador
  • M. Mozafari
  • L. Tirado
Original Paper
  • 18 Downloads

Abstract

In this research, vanadium carbo-nitride (VCN) coatings were synthesized via physical vapor deposition with the aim to determinate the electrochemical behavior of the VCN layers on industrial steel substrates. The VCN coatings, deposited at various negative bias voltage were characterized by X-ray diffraction (XRD), exhibiting the crystallography orientations corresponding to a mix of VCN, VC and VN phases while the X-ray photoelectron spectroscopy (XPS) measurements were used to determinate the chemical composition of the metallic carbon-nitride materials. By using electrochemical impedance spectroscopy (EIS) and Tafel curves, it was possible to estimate the electrochemical behavior of the VCN coatings in a sodium chloride (NaCl) solution. Moreover, scanning electron microscopy (SEM) was performed to analyze morphological and chemical surfaces changes on the VCN layer due to the reaction in NaCl/VCN/steel surface interface. The electrochemical behavior of the VCN coatings in relation to the uncoated AISI 8620 steel showed a reduction of 98% in the corrosion rate, indicating that the applied VCN coatings may be a promising material for industrial applications.

Keywords

VCN coatings Corrosion resistance Industrial applications 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This research was supported by the Universidad Militar Nueva Granada, Colombia, contract number ING-1775-2015 and the Universidad del Quindío, Colombia.

References

  1. 1.
    Yang Y-S, Cho T-P, Ye H-W (2014) The effect of deposition parameters on the mechanical properties of Cr-C-N coatings. Surf Coat Technol 259:141–145CrossRefGoogle Scholar
  2. 2.
    Zhou F, Adachi K, Kato K (2006) Friction and wear behavior of BCN coatings sliding against ceramic and steel balls in various environments. Wear 261:301–310CrossRefGoogle Scholar
  3. 3.
    Caicedo JC, Amaya C, Yate L, Aperador W, Zambrano G, Gómez ME, Alvarado-Rivera J, Muñoz-Saldaña J, Prieto P (2010) Effect of applied bias voltage on corrosion-resistance for TiC1−x N x and Ti1−xNbxC1−y N y coatings. Appl Surf Sci 256:2876–2883CrossRefGoogle Scholar
  4. 4.
    Grigore E, Ruset C, Luculescu C (2011) The structure and properties of VN-VCN-VC coatings deposited by a high energy ion assisted magnetron sputtering method. Surf Coat Technol 205:S29–S32CrossRefGoogle Scholar
  5. 5.
    Caicedo JC, Amaya C, Yate L, Gómez ME, Zambrano G, Alvarado-Rivera J, Muñoz-Saldaña J, Prieto P (2010) TiCN/tinbCN multilayer coatings with enhanced mechanical properties. Appl Surf Sci 256:5898–5904CrossRefGoogle Scholar
  6. 6.
    Mitterer C, Fateh N, Munnik F (2011) Microstructure–property relations of reactively magnetron sputtered VCxny films. Surf Coat Technol 205:3805–3809CrossRefGoogle Scholar
  7. 7.
    Cotruta CM, Braicb V, Balaceanub M, Titorencuc I, Braicb M, Paraua AC (2013) Corrosion resistance, mechanical properties and biocompatibility of Hf-containing zrCN coatings. Thin Solid Films 538:48–55CrossRefGoogle Scholar
  8. 8.
    Lewin E, Persson P, Lattemann M, Stuber M, Gorgoi M, Sandell A, Ziebert C, Schafers F, Braun W, Halbritter J, Ulrich S, Eberhardt W, Hultman L, Siegbahn H, Svensson S, Jansson U (2008) On the origin of a third spectral component of C1s XPS-spectra for nc-TiC/aC nanocomposite thin films. Surf Coat Technol 202:3563–3570CrossRefGoogle Scholar
  9. 9.
    Anthony MD, Lad RJ, Christensen TM (1996) Surface structure of crystalline ceramics. Surf Interface Anal 24:681Google Scholar
  10. 10.
    Ech-Chamikh E, Essafti A, Ijdiyaou Y, Azizan M (2006) Nitrogen-doped reduced graphene oxide prepared by simultaneous thermal reduction and nitrogen doping of graphene oxide in air and its application as an electrocatalyst. Sol Energy Mater Sol Cells 90:1420–1423CrossRefGoogle Scholar
  11. 11.
    Kamath G, Ehiasarian AP, Purandare Y, Hovsepian PEh (2011) Tribological and oxidation behaviour of tialCN/VCN nanoscale multilayer coating deposited by the combined HIPIMS/(HIPIMS-UBM) technique. Surf Coat Technol 205:2823–2829CrossRefGoogle Scholar
  12. 12.
    Fateh N, Fontalvo GA, Gassner G, Mitterer C (2007) Influence of high-temperature oxide formation on the tribological behaviour of TiN and VN coatings. Wear 262:1152CrossRefGoogle Scholar
  13. 13.
    Ipaz L, Caicedo JC, Esteve J, Espinoza-Beltran FJ, Zambrano G (2012) Improvement of mechanical and tribological properties in steel surfaces by using titanium-aluminum / titanium-aluminum nitride multilayered system. Appl Surf Sci 258:3805– 3814CrossRefGoogle Scholar
  14. 14.
    Hanumantha PJ, Datta MK, Kadakia KS, Ho Hong D, Chung SJ, Tam MC, Poston JA, Manivannan A, Kumta PN (2013) A simple low temperature synthesis of nanostructured vanadium nitride for supercapacitor applications. J Electrochem Soc 160(11):2195–2206CrossRefGoogle Scholar
  15. 15.
    Laurent F, Michel P, Feurer R, Morancho R, Valade L, Choukroun R, Cassoux P (1993) New organometallic route to vanadium carbonitride thin films. J Mater Chem 3(6):659–663CrossRefGoogle Scholar
  16. 16.
    Gonçalves G, Vila M, Bdikin I, Andrés A, Emami N, Ferreira RAS, Carlos LD, Grácio J, Marques PAAP (2014) Breakdown into nanoscale of graphene oxide: confined hot spot atomic reduction and fragmentation. Nature Scientific Reports 4:6735CrossRefGoogle Scholar
  17. 17.
    Junbo LI, Xiwen L, Cancan C, Jia G, Zhiquan P (2013) Silica-gel Supported V Complexes: preparation, characterization and catalytic oxidative desulfurization. Chin J Chem Eng 21(8):860–866CrossRefGoogle Scholar
  18. 18.
    Bacal M, Perrière J, Tanguy M, Vesselovzorov AN, Maslakov KI, Dementjev AP (2000) Study of carbon nitride films deposited using a Hall-type ion source. J Phys D Appl Phys 33:2373CrossRefGoogle Scholar
  19. 19.
    Franz R, Neidhard J, Sartory B, Tessadri R, Mitterer C (2008) Micro- and bonding structure of arc-evaporated alcrVN hard coatings. Thin Solid Films 516:6151–6157CrossRefGoogle Scholar
  20. 20.
    Grigore E, Ruset C, Luculescu C (2011) The structure and properties of VN-VCN-VC coatings deposited by a high energy ion assisted magnetron sputtering method. Surf Coat Technol 205:29–32CrossRefGoogle Scholar
  21. 21.
    Carvalho I, Henriques M, Oliveira JC, Alves CFA, Piedade AP, Carvalho S (2013) Influence of surface features on the adhesion of Staphylococcus epidermidis to Ag–TiCN thin films. Sci Technol Adv Mater 14:035009CrossRefGoogle Scholar
  22. 22.
    Randles JEB (1947) Kinetics of rapid electrode reactions. Discuss Faraday Soc 1:11–18CrossRefGoogle Scholar
  23. 23.
    Sennaa LF, Achete CA, Simão RA, Hirsch T (2001) Comparative study between the electrochemical behavior of TiN, TiCxNy and CrN hard coatings by using microscopy and electrochemical techniques. Mater Res 4 (2):137–141CrossRefGoogle Scholar
  24. 24.
    Madaoui N, Saoula a N, Zaidc B, Saidic D, Ahmed ASi (2014) Structural, mechanical and electrochemical comparison of TiN and TiCN coatings on XC48 steel substrates in NaCl 3.5% water solution. Appl Surf Sci 312:134–138CrossRefGoogle Scholar
  25. 25.
    Tato W, Landolt D (1998) Electrochemical determination of the porosity of single and duplex PVD coatings of titanium and titanium nitride on brass. J Electrochem Soc 145:4173CrossRefGoogle Scholar
  26. 26.
    Chang K-L, Chung S-C, Lai S-H, Shih H-C (2004) The electrochemical behavior of thermally oxidized CrN coatings deposited on steel by cathodic arc plasma deposition. Appl Surf Sci 236(6):406–415CrossRefGoogle Scholar
  27. 27.
    Altun H, Sen S (2005) The effect of DC magnetron sputtering AlN coatings on the corrosion behaviour of magnesium alloys. Surf Coat Technol 197:193CrossRefGoogle Scholar
  28. 28.
    Moreno C, Hernández S, Santana JJ, González Guzmán J, Souto RM, González S (2012) Characterization of water uptake by organic coatings used for the corrosion protection of steel as determined from capacitance measurements. Int J Electrochem Sci 7:8444–8457Google Scholar
  29. 29.
    Yoo YH, Le DP, Kim JG, Kim SK, Vinh PV (2008) Corrosion behavior of TiN, TiAlN, TiAlSiN thin films deposited on tool steel in the 3.5 wt.% NaCl solution. Thin Solid Films 516:3544–3548CrossRefGoogle Scholar
  30. 30.
    Ipaz L, Aperador W, Caicedo JC, Esteve J, Zambrano G (2013) Improvement of the electrochemical behavior of steel surfaces using a [Ti-Al/Ti-Al-N]n multilayer system. J Mater Eng Perform 22:1471–1480CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • J. C. Caicedo
    • 1
  • W. Aperador
    • 2
  • M. Mozafari
    • 3
  • L. Tirado
    • 4
  1. 1.Tribology, Powder Metallurgy and Processing of Solid Recycling Research GroupUniversidad del ValleCaliColombia
  2. 2.School of EngineeringUniversidad Militar Nueva GranadaBogotáColombia
  3. 3.Bioengineering Research Group, Nanotechnology and Advanced Materials DepartmentMaterials and Energy Research Center (MERC)TehranIran
  4. 4.Laboratorio de OptoelectrónicaUniversidad del QuindíoArmeniaColombia

Personalised recommendations