, Volume 10, Issue 5, pp 2241–2251 | Cite as

Optimization of AgNPs/mesoPS Active Substrates for Ultra–Low Molecule Detection Process

  • Alwan M. Alwan
  • Layla A. WaliEmail author
  • Ali A. Yousif
Original Paper


In this study, the effects of the sizes of AgNPs and the resulting hotspot nanogaps on the SERS spectra have been studied extensively. The optimal condition of AgNPs/mesoPS active substrate for efficient, high reproducibility and excellent stability was obtained at lowest nanogaps. The maximum EFs of about 1.4 × 105 and 1.2 × 105 were obtained for 10− 5 M Cy3 dye solution concentration at two average AgNP sizes of (282.95 and 338.1) nm and corresponding average nanogaps of (22.28 and 26.43) nm respectively. The better reproducibility with minimum variation of SERS intensity of about (14%) after six month aging in air was obtained for more uniform AgNPs deposited on mesoPS surface with peak nanogaps of 10 nm at 8 min immersion time. The detection limit for Cy3 dye molecules adsorbed on AgNPs/mesoPS active substrate prepared at 8 min has been evaluated as 10− 14 M and the high EF of about 5.3 × 1012 was obtained when using this concentration.


SERS – active substrate Meso porous silicon Silver nanoparticles Cryptocyanine dye 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors would like to express their gratitude to the Department of Applied Sciences/University of Technology for assistance with samples preparation and to the Nanoscience and Nanotechnology Research Center—University of Tehran for assistance with SERS measurements.


  1. 1.
    Chursanova M, Germash L, Yukhymchuk V, Dzhagan V, Khodasevich I, Cojoc D (2010) Optimization of porous silicon preparation technology for SERS applications. Appl Surf Sci 256(11):3369–3373CrossRefGoogle Scholar
  2. 2.
    Zhou Q, Kim T (2016) Review of microfluidic approaches for surface-enhanced Raman scattering. Sens Actuators B Chem 227:504–514CrossRefGoogle Scholar
  3. 3.
    Hakonen A, Andersson PO, Schmidt MS, Rindzevicius T, Käll M (2015) Explosive and chemical threat detection by surface-enhanced Raman scattering: A review. Analytica chimica acta 893:1–13CrossRefPubMedGoogle Scholar
  4. 4.
    Yamaguchi A, Fukuoka T, Takahashi R, Hara R, Utsumi Y (2016) Dielectrophoresis-enabled surface enhanced Raman scattering on gold-decorated polystyrene microparticle in micro-optofluidic devices for high-sensitive detection. Sens Actuators B Chem 230:94–100CrossRefGoogle Scholar
  5. 5.
    Qu L-L, Liu Y-Y, He S-H, Chen J-Q, Liang Y, Li H-T (2016) Highly selective and sensitive surface enhanced Raman scattering nanosensors for detection of hydrogen peroxide in living cells. Biosens Bioelectron 77:292–298CrossRefPubMedGoogle Scholar
  6. 6.
    Ge J, Li Y, Wang J, Pu Y, Xue W, Liu X (2016) Green synthesis of graphene quantum dots and silver nanoparticles compounds with excellent surface enhanced Raman scattering performance. J Alloys Compd 663:166–171CrossRefGoogle Scholar
  7. 7.
    Zheng Y, Chen Z, Zheng C, Lee Y-I, Hou X, Wu L, Tian Y (2016) Derivatization reaction-based surface-enhanced Raman scattering (SERS) for detection of trace acetone. Talanta 155:87–93CrossRefPubMedGoogle Scholar
  8. 8.
    Li Y, Zhang K, Zhao J, Ji J, Ji C, Liu B (2016) A three-dimensional silver nanoparticles decorated plasmonic paper strip for SERS detection of low-abundance molecules. Talanta 147:493–500CrossRefPubMedGoogle Scholar
  9. 9.
    Gong T, Zhu Y, Zhang J, Ren W, Quan J, Wang N (2015) Study on surface-enhanced Raman scattering substrates structured with hybrid Ag nanoparticles and few-layer graphene. Carbon 87:385–394CrossRefGoogle Scholar
  10. 10.
    Qi M, Huang X, Zhou Y, Zhang L, Jin Y, Peng Y, Jiang H, Du S (2016) Label-free surface-enhanced Raman scattering strategy for rapid detection of penicilloic acid in milk products. Food Chem 197:723–729CrossRefPubMedGoogle Scholar
  11. 11.
    Xu Z, Meng X, Zhang Y, Li F (2016) Effects and mechanisms of water matrix on surface-enhanced Raman scattering analysis of arsenite on silver nanofilm. Colloids Surf A Physicochem Eng Asp 497:117–125CrossRefGoogle Scholar
  12. 12.
    Huang C, Xu C, Lu J, Li Z, Tian Z (2016) 3D Ag/ZnO hybrids for sensitive surface-enhanced Raman scattering detection. Appl Surf Sci 365:291–295CrossRefGoogle Scholar
  13. 13.
    Cao Y, Lv M, Xu H, Svec F, Tan T, Lv Y (2015) Planar monolithic porous polymer layers functionalized with gold nanoparticles as large-area substrates for sensitive surface-enhanced Raman scattering sensing of bacteria. Anal Chim Acta 896:111–119CrossRefPubMedGoogle Scholar
  14. 14.
    Gong T, Cui Y, Goh D, Voon KK, Shum PP, Humbert G, Auguste J-L, Dinh X-Q, Yong K-T, Olivo M (2015) Highly sensitive SERS detection and quantification of sialic acid on single cell using photonic-crystal fiber with gold nanoparticles. Biosens Bioelectron 64:227–233CrossRefPubMedGoogle Scholar
  15. 15.
    Feng F, Zhi G, Jia HS, Cheng L, Tian Y T, Li X J (2009) SERS detection of low-concentration adenine by a patterned silver structure immersion plated on a silicon nanoporous pillar array. Nanotechnology 20 (29):295501CrossRefPubMedGoogle Scholar
  16. 16.
    Alwan AM, Yousif AA, Wali LA (2017) A study on the morphology of the silver nanoparticles deposited on the n-type porous silicon prepared under different illumination types. Plasmonics 1–9Google Scholar
  17. 17.
    Alwan AM, Yousif AA, Wali LA (2017) The growth of the silver nanoparticles on the mesoporous silicon and macroporous silicon: a comparative study. Indian J Pure Appl Phys (IJPAP) 55(11):813–820Google Scholar
  18. 18.
    Giorgis F, Descrovi E, Chiodoni A, Froner E, Scarpa M, Venturello A, Geobaldo F (2008) Porous silicon as efficient surface enhanced Raman scattering (SERS) substrate. Appl Surf Sci 254(22):7494–7497CrossRefGoogle Scholar
  19. 19.
    Panarin AY, Terekhov S, Kholostov K, Bondarenko V (2010) SERS-active substrates based on n-type porous silicon. Appl Surf Sci 256(23):6969–6976CrossRefGoogle Scholar
  20. 20.
    Wang YQ, Ma S, Yang QQ, Li X J (2012) Size-dependent SERS detection of R6G by silver nanoparticles immersion-plated on silicon nanoporous pillar array. Appl Surf Sci 258(15):5881–5885CrossRefGoogle Scholar
  21. 21.
    Ye W, Shen C, Tian J, Wang C, Bao L, Gao H (2008) Self-assembled synthesis of SERS-active silver dendrites and photoluminescence properties of a thin porous silicon layer. Electrochem Commun 10(4):625–629CrossRefGoogle Scholar
  22. 22.
    Zeiri L, Rechav K, Ze Porat, Zeiri Y (2012) Silver nanoparticles deposited on porous silicon as a surface-enhanced Raman scattering (SERS) active substrate. Appl Spectrosc 66(3):294–299CrossRefPubMedGoogle Scholar
  23. 23.
    Virga A, Rivolo P, Frascella F, Angelini A, Descrovi E, Geobaldo F, Giorgis F (2013) Silver nanoparticles on porous silicon: approaching single molecule detection in resonant SERS regime. J Phys Chem C 117(39):20139–20145CrossRefGoogle Scholar
  24. 24.
    Lin H, Mock J, Smith D, Gao T, Sailor M J (2004) Surface-enhanced Raman scattering from silver-plated porous silicon. J Phys Chem B 108(31):11654–11659CrossRefGoogle Scholar
  25. 25.
    Panarin AY, Chirvony V, Kholostov K, Turpin P-Y, Terekhov S (2009) Formation of SERS-active silver structures on the surface of mesoporous silicon. J Appl Spectrosc 76(2):280–287CrossRefGoogle Scholar
  26. 26.
    Lai Y, Wang J, He T, Sun S (2014) Improved surface enhanced Raman scattering for nanostructured silver on porous silicon for ultrasensitive determination of 2, 4, 6-trinitrotoluene. Anal Lett 47(5):833–842CrossRefGoogle Scholar
  27. 27.
    Harraz FA, Ismail AA, Bouzid H, Al-Sayari S, Al-Hajry A, Al-Assiri M (2015) Surface-enhanced Raman scattering (SERS)-active substrates from silver plated-porous silicon for detection of crystal violet. Appl Surf Sci 331:241–247CrossRefGoogle Scholar
  28. 28.
    Le Ru E, Etchegoin P (2004) Sub-wavelength localization of hot-spots in SERS. Chem Phys Lett 396 (4):393–397CrossRefGoogle Scholar
  29. 29.
    Bandarenka HV, Girel KV, Bondarenko VP, Khodasevich IA, Panarin AY, Terekhov SN (2016) Formation regularities of plasmonic silver nanostructures on porous silicon for effective surface-enhanced raman scattering. Nanoscale Res Lett 11(1):1–11CrossRefGoogle Scholar
  30. 30.
    Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107(3):668–677CrossRefGoogle Scholar
  31. 31.
    Botta R, Upender G, Sathyavathi R, Rao D N, Bansal C (2013) Silver nanoclusters films for single molecule detection using Surface Enhanced Raman Scattering (SERS). Mater Chem Phys 137(3):699–703CrossRefGoogle Scholar
  32. 32.
    Dieringer JA, McFarland AD, Shah NC, Stuart DA, Whitney AV, Yonzon CR, Young MA, Zhang X, Van Duyne RP (2006) Introductory lecture surface enhanced Raman spectroscopy: new materials, concepts, characterization tools, and applications. Faraday Discuss 132:9–26CrossRefPubMedGoogle Scholar
  33. 33.
    Zhang J, Qu S, Zhang L, Tang A, Wang Z (2011) Quantitative surface enhanced Raman scattering detection based on the “sandwich” structure substrate. Spectrochim Acta A Mol Biomol Spectrosc 79(3):625–630CrossRefPubMedGoogle Scholar
  34. 34.
    Natan MJ (2006) Concluding remarks surface enhanced Raman scattering. Faraday Discuss 132:321–328CrossRefPubMedGoogle Scholar
  35. 35.
    Virga A, Rivolo P, Descrovi E, Chiolerio A, Digregorio G, Frascella F, Soster M, Bussolino F, Marchiò S, Geobaldo F (2012) SERS active Ag nanoparticles in mesoporous silicon: detection of organic molecules and peptide–antibody assays. J Raman Spectrosc 43(6):730–736CrossRefGoogle Scholar
  36. 36.
    Malvadkar NA, Demirel G, Poss M, Javed A, Dressick WJ, Demirel MC (2010) Fabrication and use of electroless plated polymer surface-enhanced Raman spectroscopy substrates for viral gene detection. J Phys Chem C 114(24):10730–10738CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Alwan M. Alwan
    • 1
  • Layla A. Wali
    • 2
    Email author
  • Ali A. Yousif
    • 3
  1. 1.Department of Applied SciencesUniversity of TechnologyBaghdadIraq
  2. 2.College of Basic EducationAl-Mustansiriyah UniversityBaghdadIraq
  3. 3.College of EducationAl-Mustansiriyah UniversityBaghdadIraq

Personalised recommendations