, Volume 10, Issue 5, pp 2071–2077 | Cite as

Frequency-Dependent Dielectric Parameters of Au/TiO2/n-Si (MIS) Structure

  • A. Büyükbaş Uluşan
  • A. Tataroğlu
Original Paper


In this study, thin film of titanium dioxide (TiO2) was deposited onto n-type silicon substrate by radio frequency (RF) magnetron sputtering system. The admittance (capacitance and conductance) measurements were performed in the frequency range of 500 Hz - 500 kHz and at room temperature. The dielectric parameters such as dielectric constant (ε), loss (ε), loss tangent (tan δ), ac conductivity (σac) and complex modulus (M) of the MIS structure were obtained from these measurements. While the C value decreases with an increase of the frequency, the G increases. The change in C and G with frequency is attributed to the presence interface states. The value of ε and ε decreases with increasing frequency. On the other hand, the value of ac conductivity increases with increasing frequency.


MIS structure Admittance measurements Dielectric constant and loss ac conductivity Modulus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work is supported by Gazi University Scientific Research Project (BAP) with the research Project Number 05/2016-15.


  1. 1.
    Nicollian EH, Brews JR (1982) MOS Physics and technology. Wiley, New YorkGoogle Scholar
  2. 2.
    Sze SM (1981) Physics of Semiconductor Devices 2nd Ed. Wiley, New YorkGoogle Scholar
  3. 3.
    Tataroglu A (2013) Chin Phys B 22(1-6):068402CrossRefGoogle Scholar
  4. 4.
    Card HC, Rhoderick EH (1971) J Phys D: Appl Phys 4:1589–1601CrossRefGoogle Scholar
  5. 5.
    Fuyuki T, Matsunami H (1986) Jpn J Appl Phys 25:1288–1291CrossRefGoogle Scholar
  6. 6.
    Liu GX, Shan FK, Lee WJ, Shin BC (2007) J Korean Phys Soc 50:1827–1832CrossRefGoogle Scholar
  7. 7.
    Addepall S, Suda U (2016) Bull Mater Sci 39:789–795CrossRefGoogle Scholar
  8. 8.
    Kumar M, Kumar M, Kumar Dinesh (2010) Microelectron Eng 87:447–450CrossRefGoogle Scholar
  9. 9.
    Pessoa RS, Pereira FP, Testoni GE, Chiappim W, Maciel HS, Santos LV (2015) J Integrated Circuits Sys 10:38–42Google Scholar
  10. 10.
    Long H, Chen A, Yang G, Y Li PLu (2009) Thin Solid Films 517:5601–5604CrossRefGoogle Scholar
  11. 11.
    Bernardi MIB, Lee EJH, Lisboa-Filho PN, Leite ER, Longo E, Varela JA (2001) Mater Research 4:223–227CrossRefGoogle Scholar
  12. 12.
    Mergel D, Buschendorf D, Eggert S, Grammes R, Samset B (2000) Thin Solid Films 371:218–244CrossRefGoogle Scholar
  13. 13.
    Nicollian EH, Goetzberger A, Lopez AD (1969) Solid State Electron 12:937–944CrossRefGoogle Scholar
  14. 14.
    Hussain I, Soomro MY, Bano N, Nur O, Willander M (2012) J Appl Phys 112:064506CrossRefGoogle Scholar
  15. 15.
    Altndal S (2017) J Mater Electron Devices 1:42–47Google Scholar
  16. 16.
    Karatas S, Turut A (2004) Vacuum 74:45–53CrossRefGoogle Scholar
  17. 17.
    Yakuphanoglu F (2016) Compos Part B 92:151–159CrossRefGoogle Scholar
  18. 18.
    Canbay CA, Tataroglu A, Dere A, Al-Ghamdi AA, Yakuphanoglu F (2016) J Alloys Compd 688:762–768CrossRefGoogle Scholar
  19. 19.
    İlhan M (2017) J Mater Electron Devices 1:15–20Google Scholar
  20. 20.
    Chelkowski A (1980) Dielectric physics. Elsevier, AmsterdamGoogle Scholar
  21. 21.
    Popescu M, Bunget I (1984) Physics of solid dielectrics. Elsevier, AmsterdamGoogle Scholar
  22. 22.
    Kao KC (2004) Dielectric phenomena in solids. Elsevier, LondonGoogle Scholar
  23. 23.
    Pochard I, Frykstrand S, Ahlström O, Forsgren J, Strømme M (2014) J Appl Phys 115:044306CrossRefGoogle Scholar
  24. 24.
    Shiwakoti N, Bobby A, Antony B, Asokan K (2016) J Vac Sci Technol B 34:051206CrossRefGoogle Scholar
  25. 25.
    Prabakar K, Narayandass SK, Mangalaraj D (2003) Phys Stat Sol (a) 199:507–514CrossRefGoogle Scholar
  26. 26.
    Fouad SS, Sakr GB, Yahia IS, Abdel-Basset DM, Yakuphanoglu F (2014) Mater Research Bull 49:369–383CrossRefGoogle Scholar
  27. 27.
    Badr AM, Elshaikh HA, Ashraf IM (2011) J Modern Phys 2:12–25CrossRefGoogle Scholar
  28. 28.
    Büyükbaş A, Tataroğlu A (2015) J Nanoelectron Optoelectron 10:675–679CrossRefGoogle Scholar
  29. 29.
    Cherif A, Jomni S, Belgacem W, Elghoul N, Khirouni K, Beji L (2015) Mater Sci Sem Process 29:143–149CrossRefGoogle Scholar
  30. 30.
    Shukla N, Kumar V, Dwivedi DK (2016) J Non-Oxide Glasses 8:47–57Google Scholar
  31. 31.
    Chelkowski A (1980) Dielectric physics. Elsevier, AmsterdamGoogle Scholar
  32. 32.
    Büyükbaş A, Tataroğlu A, Balbaş M (2015) J Optoelectron Adv Mater 17:1134–1138Google Scholar
  33. 33.
    Dubey AK, Singh P, Singh S, Kumar D, Parkash O (2011) J Alloys Compd 509:3899–3906CrossRefGoogle Scholar
  34. 34.
    Tataroğlu A, Yücedağ İ, Altndal S (2008) Microelectron Eng 85:1518–1523CrossRefGoogle Scholar
  35. 35.
    Badapanda T, Harichandan R K, Nayak S S, Mishra A, Anwar S (2014) Process Appl Ceramics 8:145–153CrossRefGoogle Scholar
  36. 36.
    Ertuğrul R, Tataroğlu A (2012) Chin Phys Lett 29:077304CrossRefGoogle Scholar
  37. 37.
    Saji J, Khare A, Choudhary RNP, Mahapatra SP (2015) J Elastomers Plastics 47:394–415CrossRefGoogle Scholar
  38. 38.
    Philip A, Thomas S, Nisha R, Kumar KR (2015) Indian J Pure Appl Phys 53:464–469Google Scholar
  39. 39.
    Rathan SV, Govindaraj G (2010) Solid State Ionics 181:504–509CrossRefGoogle Scholar
  40. 40.
    Ram M, Chakrabarti S (2008) J Phys Chem Solids 69:905–912CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics, Faculty of ScienceGazi UniversityAnkaraTurkey

Personalised recommendations