Skip to main content
Log in

Concentration Dependent Structural, Morphological, Spectral, Optical and Electrical Properties of Spray Pyrolyzed NiO thin films

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Nickel oxide (NiO) thin films were prepared by spray pyrolysis technique using a solution of nickel (II) chloride hexahydrate (NiCl2.6H2O) and distilled water on glass substrates. The substrate temperature during deposition was maintained at 450 C. The effect of solution concentration on the structural, morphological, elemental, spectral, optical and electrical properties of the NiO films were studied for different concentrations from 0.1 M to 0.3 M by XRD, SEM, EDX, FTIR, UV-vis-NIR spectrophotometer, Hot probe and Hall effect measurement system. The XRD study reveals that the NiO films are polycrystalline in nature with cubic structure. Also, the crystallite size increases with the increase in solution concentration. According to SEM, the increase in grain size clearly shows the effect of solution concentration. The elemental composition of the film was determined by EDX. FTIR study shows the presence of chemical identification. The optical band gap decreases while the absorption increases with the increase in solution concentration. The electrical study shows that all the NiO films are p-type. However, resistivity, carrier concentration and carrier mobility of the NiO films depend on the solution concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Sato H, Minami T, Takato S, Yamada T (1993) Thin Solid Films 236:27

    Article  CAS  Google Scholar 

  2. Shuxi Z, Ribbing CG, Wackelgard E (2004) Solar Energy Mater Solar Cells 84:193

    Article  CAS  Google Scholar 

  3. Sasi B, Gopchandran K, Manoj P, Koshy P, Rao P, Vaidyan VK (2003) Vacuum 68:149–154

    Article  Google Scholar 

  4. Vera F, Schrebler R, Muñoz E, Suarez C, Cury P, Gomez A, Cordova R, Marotti RE, Dalchiele EA (2005) Thin Solid Films 490:182

    Article  CAS  Google Scholar 

  5. Kang J -K, Rhee SW (2001) Thin Solid Films 391:57–61

    Article  CAS  Google Scholar 

  6. CercKorošec R, Bukovec P (2004) Thermochim Acta 410:65–71

    Article  CAS  Google Scholar 

  7. Cheng HC, Chen CF, Lee CC (2006) Thin Solid Films 498:142–145

    Article  CAS  Google Scholar 

  8. Jiang DY, Qin JM, Wang X, Gao S, Liang QC, Zhao JX (2012) Vacuum 86:1083–1086

    Article  CAS  Google Scholar 

  9. Fasaki I, Koutoulaki I, Kompitsas M, Charitidis C (2010) Appl Surf Sci 257:429–433

    Article  CAS  Google Scholar 

  10. Ogata K, Sakurai K, Fujita SZ, Fujita SG, Matsushige K. (2000) J Cryst Growth 214:312–315

    Article  Google Scholar 

  11. Reguig A, Regragui M, Morsli M, Khelil A, Addou M, Berne’de JC (2006) Sol Energy Mater Sol Cells 90:1381

    Article  CAS  Google Scholar 

  12. Martinez AI, Acosta DR (2005) Thin Solid Films 483:107

    Article  CAS  Google Scholar 

  13. Vazquez Luna JG, Zehe A, Zeleya-Angel O (1999) Cryst Res Technol 34:949–958

    Article  CAS  Google Scholar 

  14. Okuyama K, Ohshima K, Tsudo K (1991) Kona 9:79

    Article  CAS  Google Scholar 

  15. Baschloo O, Hag Feldt A (2001) J Phys Chem B 105:3039

    Article  CAS  Google Scholar 

  16. Chen HL, Lu YM, Hwang WS (2005) Surf Coat Technol 198:138–142

    Article  CAS  Google Scholar 

  17. Lee Y -M, Lai C -H (2009) Solid-State Electron 53:1116–1125

    Article  CAS  Google Scholar 

  18. Chan I -M, Hong FC (2004) Thin Solid Films 450:304–311

    Article  CAS  Google Scholar 

  19. Yang JL, Lai YS, Chen JS (2005) Thin Solid Films 488:242

    Article  CAS  Google Scholar 

  20. Azelee W, Abu Bakar W, Yusuf Othman M, Ali R, Yong C, Toemen S (2009) Modern Appl Sci 3:35–43

    Google Scholar 

  21. Shaigan N, Ivey DG, Chen W (2009) J Electrochem Soc 156:B765–B770

    Article  CAS  Google Scholar 

  22. Patil PS (1999) Mater Chem Phys 59:185–198

    Article  CAS  Google Scholar 

  23. Fujii E, Tomozava A, Torii H, Takayama R (1996) Jpn J Appl Phys 35:328–330

    Article  Google Scholar 

  24. Stamataki M, Tsamakis D, Brilis N, Fasaki I, Giannoudakos A, Kompitsas M (2008) Phys Stat Sol (A) 205:2064–2068

    Article  CAS  Google Scholar 

  25. Ahn KS, Nah YC, Sung YE (2002) Appl Surf Sci 199:259–269

    Article  CAS  Google Scholar 

  26. Abbas SI, Ubaid AQ (2014) J Adv Phys 6:1016–1023

    Google Scholar 

  27. Puspharajah P, Radhakrishna S (1997) J Mater Sci 32:3001–3006

    Article  CAS  Google Scholar 

  28. Juybari HA, Bagheri-Mohagheghi M-M, Shokooh-Saremi M (2011) J Alloys Compd 509:2770–2775

    Article  CAS  Google Scholar 

  29. Mrabet C, Ben Amor M, Boukhachem A, Amlouk M, Manoubi T (2016) Ceram Int 42:5963–5978

    Article  CAS  Google Scholar 

  30. Lu YM, Hwang WS, Yang JS, Chuang HC (2002) Thin Solid Films 420-421:54–61

    Article  CAS  Google Scholar 

  31. Patterson AL (1939) Phys Rev 56:978

    Article  CAS  Google Scholar 

  32. Kashevsky E, Agabekov VE, Kashevsky SB, Kekalo KA, Manina EY, Prokhorov IV, Ulashchik VS (2008) Particuology 6:322

    Article  CAS  Google Scholar 

  33. Davar F, Fereshteh Z, Salavati-Niasari M (2009) J Alloys Compd 476:797–801

    Article  CAS  Google Scholar 

  34. Han X, Liu R, Chen W, Xu Z (2008) Thin Solid Films 516:4025–4029

    Article  CAS  Google Scholar 

  35. Shah JM, Li YL, Gessmann T, Schubert EF (2003) J Appl Phys 94:2627–2631

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mani Menaka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menaka, S.M., Umadevi, G. Concentration Dependent Structural, Morphological, Spectral, Optical and Electrical Properties of Spray Pyrolyzed NiO thin films. Silicon 10, 2023–2029 (2018). https://doi.org/10.1007/s12633-017-9716-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-017-9716-9

Keywords

Navigation