Advertisement

Silicon

, Volume 10, Issue 5, pp 1911–1919 | Cite as

Micromorphology and Optical Bandgap Characterization of Copper Oxide Nanowires

  • Samaneh Shapouri
  • Seyed Mohammad Elahi
  • Laya Dejam
  • Zohreh Bagheri
  • Atefeh Ghaderi
  • Shahram Solaymani
Original Paper
  • 31 Downloads

Abstract

Due to the industrial applications of nasno materials, the growth of Copper oxide (CuO) nanowires (NWs) at the same and opposite directions of the electric and gravitational fields was investigated to study the effects of fields on the NWs properties. The experiments were designed to grow NWs using thermal oxidation method at 450 °C for 50 h. NWs growth was evaluated to study two distinct cases; first, substrates exposed to the gravitational field and second those treated with electric field (EF) in-lined with gravitation field (GF). It was observed that the electric field developed a diameter homogeneity while compressing the NWs and decreasing the diameters. Furthermore, the GF influenced only the length of the NWs, while the EF had an impact on both length and diameter of the NWs. The direction of fields played an important role in NWs morphology and intensity of XRD pattern and optical properties. It was also observed that field direction greatly influenced the NWs length and diameter.

Keywords

Copper oxide nanowires Micro morphology Optical bandgap Gravitational field Electrical field 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Compliance with Ethical Standards

Conflict of interest

The authors report no conflict of interests. The authors alone are responsible for the content and writing of the paper.

References

  1. 1.
    Molamohammadi M, Luna C, Arman A, Solaymani S, Boochani A, Ahmadpourian A, Shafiekhani A (2015) Preparation and magnetoresistance behavior of nickel nanoparticles embedded in hydrogenated carbon film. J Mater Sci: Mater Electron 26:6814–6818Google Scholar
  2. 2.
    Talu S, Bramowicz M, Kulesza S, Ghaderi A, Dalouji V, Solaymani S, Fathi kenari M, Ghoranneviss M (2016) Fractal features and surface micromorphology of diamond nanocrystals. J Microsc 264:143–152CrossRefGoogle Scholar
  3. 3.
    Talu S, Bramowicz M, Kulesza S, Solaymani S, Shafikhani A, Ghaderi A, Ahmadirad M (2016) Gold nanoparticles embedded in carbon film: micromorphology analysis. J Ind Eng Chem 35:158–166CrossRefGoogle Scholar
  4. 4.
    Talu S, Bramowicz M, Kulesza S, Solaymani S, Ghaderi A, Dejam L, Boochani A, Elahi S.M (2016) Microstructure and micromorphology of ZnO thin films: case study on Al doping and annealing effects. SuperlatticesMicrostruct 93:109–121Google Scholar
  5. 5.
    Ghodselahi T, Solaymani S, Akbarzadeh Pasha M, Vesaghi M A (2012) Ni nanoparticle catalyzed growth of MWCNTs on Cu NPs @ a-C:H substrate. Eur Phys J D 66:299CrossRefGoogle Scholar
  6. 6.
    Solaymani S, Ghaderi A, Beryani Nezafat N (2012) Comment on: “Characterization of microroughness parameters in titanium nitride thin films grown by dc magnetron sputtering” (J Fusion Energ  https://doi.org/10.1007/s10894-012-9510-z). J Fusion Energ 31:591CrossRefGoogle Scholar
  7. 7.
    Naderi S, Ghaderi A, Solaymani S, Golzan M M (2012) Structural, optical and thermal properties of silver colloidal nanoparticles. Eur Phys J Appl Phys 58:20401CrossRefGoogle Scholar
  8. 8.
    Dalouji V, Elahi S M, Solaymani S, Ghaderi A (2016) Absorption edge and the refractive index dispersion of carbon-nickel composite films at different annealing temperatures. Eur Phys J Plus 131:84CrossRefGoogle Scholar
  9. 9.
    Arman A, Ghodselahi T, Molamohammadi M, Solaymani S, Zahrabi H, Ahmadpourian A (2015) Microstructure and optical properties of Cu@Ni nanoparticles embedded in a-C:H. Prot Met Phys Chem Surf 51 (4):575–578CrossRefGoogle Scholar
  10. 10.
    Dalouji V, Elahi S M, Solaymani S, Ghaderi A, Elahi H (2016) Carbon films embedded by nickel nanoparticles: fluctuation in hopping rate and variable-range hopping with respect to annealing temperature. Appl Phys A 122:541CrossRefGoogle Scholar
  11. 11.
    Hochbaum A I, Yang P (2010) Semiconductor nanowires for energy conversion. Chem Rev 110(1):527–546CrossRefGoogle Scholar
  12. 12.
    Lu W, Lieber C M (2006) Semiconductor nanowires. J Phys D: Appl Phys 39(21):4523–4740CrossRefGoogle Scholar
  13. 13.
    Ghijsen J, Tjeng L H, Van J, Eskes H, Westerink J, Sawatzky G A (1988) Electronic structure of Cu2O and CuO. Phys Rev B 38(16):11322Google Scholar
  14. 14.
    Xu J, Sun J, Wei J, Xu J (2012) The wavelength dependent photovoltaic effects caused by two different mechanisms in carbon nanotube film/CuO nanowire array heterodimensional contacts. Appl Phys Lett 100 (25):251113CrossRefGoogle Scholar
  15. 15.
    Zhong M, Zeng D, Liu Z, Yu H, Zhong X, Qiu W (2010) Synthesis, growth mechanism and gas-sensing properties of large-scale CuO nanowires. Acta Mater 58(18):5926–5932CrossRefGoogle Scholar
  16. 16.
    Wang W, Liu Z, Liu Y, Xu C, Zheng C, Wang G (2003) A simple wet-chemical synthesis and characterization of CuO nanorods. Appl Phys A 76(3):417–420CrossRefGoogle Scholar
  17. 17.
    Wen X, Xi Y, Choi C L, Wan K C, Li X Y, Yang S H (2005) Copper-based nanowire materials: templated syntheses, characterizations, and applications. Langmuir 21(10):4729–4737CrossRefGoogle Scholar
  18. 18.
    Wu H, Lin D, Pan W (2006) Fabrication, assembly, and electrical characterization of CuO nanofibers. Appl Phys Lett 89(13): 3125Google Scholar
  19. 19.
    Xu C H, Woo C H, Shi S Q (2004) The effects of oxidative environments on the synthesis of CuO nanowires on Cu substrates. Superlattices Microstruct 36(1):31–38CrossRefGoogle Scholar
  20. 20.
    Xu C H, Woo C H, Shi S Q (2004) Formation of CuO nanowires on Cu foil. Chem Phys Lett 399 (1):62–66CrossRefGoogle Scholar
  21. 21.
    Huang L S, Yang S G, Li T, Gu B X, Du Y W, Lu Y N (2004) Preparation of large-scale cupric oxide nanowires by thermal evaporation method. J Cryst Growth 260(1):130–135CrossRefGoogle Scholar
  22. 22.
    Kumar A, Srivastava A K, Tiwari P, Nandedkar R V (2004) The effect of growth parameters on the aspect ratio and number density of CuO nanorods. J Phys: Condens Matter 16(47):8531Google Scholar
  23. 23.
    Jiang X C, Herricks T, Xia Y N (2002) CuO nanowires can be synthesized by heating copper substrates in air. Nano Lett 2(12):1333–1338CrossRefGoogle Scholar
  24. 24.
    Chopra N, Hu B, Hinds B (2007) Selective growth and kinetic study of copper oxide nanowires from patterned thin-film multilayer structures. J Mater Res 22(10):2691– 2699CrossRefGoogle Scholar
  25. 25.
    Kaur M, Muthe K P, Despande S K, Choudhury S, Singh J B, Verma N, Gupta S K, Yakhmi J V (2006) Selective growth and kinetic study of copper oxide nanowires from patterned thin-film multilayer structures. J Cryst Growth 22(10):2691– 2699Google Scholar
  26. 26.
    Hansen B J, Lu G, Chen J (2008) Direct oxidation growth of CuO nanowires from copper-containing substrates. J Nanomater 2008:830474CrossRefGoogle Scholar
  27. 27.
    Wang W, Wang L, Shi H, Liang Y (2012) A room temperature chemical route for large scale synthesis of sub-15 nm ultralong CuO nanowires with strong size effect and enhanced photocatalytic activity. Cryst Eng Comm 14(18):5914–5922CrossRefGoogle Scholar
  28. 28.
    Farbod M, ghaffari N, Kazeminezhad I (2014) Fabrication of single phase CuO nanowires and effect of electric field on their growth and investigation of their photocatalytic properties. Ceram Int 40(1):517–521CrossRefGoogle Scholar
  29. 29.
    Talu S, Solaymani S, Bramowicz M, Kulesza S, Ghaderi A, Shahpouri S, Elahi S.M (2016) Effect of electric field direction and substrate roughness on three-dimensional self-assembly growth of copper oxide nanowires. J Mater Sci: Mater Electron 27(9):9272–9277Google Scholar
  30. 30.
    Hochbaum A I, Yang P (2010) Semiconductor nanowires for energy conversion. Chem Rev 110(1):527–546CrossRefGoogle Scholar
  31. 31.
    Vila M, Diaz C, Piqueras J (2010) Optical and magnetic properties of CuO nanowires grown by thermal Oxidation. Appl Phys Lett 43(13):135403Google Scholar
  32. 32.
    Choopun S, Hongsith N, Wongrat E. (2010) Metal-oxide nanowires by thermal oxidation reaction technique. INTECH Open Access PublisherGoogle Scholar
  33. 33.
    Goncalves A, Campos L C, Ferlauto A S (2009) On the growth and electrical characterization of CuO nanowires by thermal oxidation. J Appl Phys 106(3):034303CrossRefGoogle Scholar
  34. 34.
    Kang D H, Jang E S, Song H, Kim D W (2008) Growth and evaluation of GaN grown on patterned sapphire substrate. J Korean Phys Soc 52:1895–1899CrossRefGoogle Scholar
  35. 35.
    Tauc J, Grigorovici R, Vancu A (1996) Optical properties and electronic structure of amorphous germanium. Phys Status Solidi 15(2):627–637CrossRefGoogle Scholar
  36. 36.
    Pankove J I, Pollak F H, Schnabolk C (1980) Optical absorption by GAP states in hydrogenated amorphous silicon. Non-Cryst Solids 35–36(1):459–462CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Samaneh Shapouri
    • 1
  • Seyed Mohammad Elahi
    • 1
  • Laya Dejam
    • 2
  • Zohreh Bagheri
    • 3
  • Atefeh Ghaderi
    • 2
  • Shahram Solaymani
    • 1
  1. 1.Department of Physics, Science and Research BranchIslamic Azad UniversityTehranIran
  2. 2.Department of Physics, West Tehran BranchIslamic Azad UniversityTehranIran
  3. 3.Department of Mathematics, Azadshahr BranchIslamic Azad UniversityAzadshahrIran

Personalised recommendations