Skip to main content

Preparation of Titania/Silica Core-Shell Hybrid Nanocomposites for 2024 Al-Alloy Corrosion Protection and Investigation of their Mechanical and Thermal Stability

Abstract

Environmental friendly hybrid nanocomposite coatings have been synthesized using titania/silica core-shell nanoparticles for corrosion protection of 2024 aluminum alloy. In addition, their thermal and mechanical stability were investigated. The nanocomposite hybrid sols were prepared by hydrolysis and condensation of 3- glycidoxypropyltrimethoxysilane (GPTMS) and tetraethylorthosilicate (TEOS) in the presence of an acidic catalyst and bisphenol-A (BPA) as a cross-linking agent. The sols were then mixed with anatase nanoparticles and 1- methylimidazole as cross-linking initiator and cured at 130 °C after pre-drying at room temperature. The shape and size of the nanoparticles in the hybrid coatings were observed and determined using transmission electron microscopy (TEM). The thermal stability and optical quality of the samples were evaluated by TGA and UV-Vis spectrophotometry techniques. The storage modulus, glass transition temperature (Tg), and damping were also determined by DMTA tests. The results indicated that the modulus, Tg, damping, and thermal stability of the coatings depend on the TiO2/SiO2 molar ratio.

This is a preview of subscription content, access via your institution.

References

  1. Qiu P, Leygraf C (2011) Initial oxidation of brass induced by humidified air. Appl Surface Sci 258:1235–1241

    Article  CAS  Google Scholar 

  2. Matavos-Aramyan S, Moussavi M, Matavos-Aramyan H, Roozkhosh S (2017) Cryptosporidium-contaminated water disinfection by a novel Fenton process. Free Radic Biol Med 106:158–167

    Article  CAS  PubMed  Google Scholar 

  3. Moussavi M, Matavos-Aramyan S (2016) Chelate-modified fenton treatment of sulfidic spent caustic. Korean J Chem Eng 33:2384–2391

    Article  CAS  Google Scholar 

  4. Saji VS (2012) 1 - The impact of nanotechnology on reducing corrosion cost, Corrosion Protection and Control Using Nanomaterials, Woodhead Publishing, Cambridge

  5. Roy S (2012) 2 - Corrosion and nanomaterials: thermodynamic and kinetic factors, Corrosion Protection and Control Using Nanomaterials. Woodhead Publishing, Cambridge, pp 16–33

    Book  Google Scholar 

  6. Sim S, Cole IS, Choi YS, Birbilis N (2014) A review of the protection strategies against internal corrosion for the safe transport of supercritical CO2 via steel pipelines for CCS purposes. Int J Greenh Gas Control 29:185–199

    Article  CAS  Google Scholar 

  7. Finšgar M, Jackson J (2014) Application of corrosion inhibitors for steels in acidic media for the oil and gas industry. A Rev Corros Sci 86:17–41

    Article  CAS  Google Scholar 

  8. Blanc D, Last A, Franc J, Pavan S, Loubet J-L (2006) Hard UV-curable organo-mineral coatings for optical applications. Thin Solid Films 515:942–946

    Article  CAS  Google Scholar 

  9. Aelion R, Loebel A, Eirich F (1950) Hydrolysis of ethyl silicate*. J Amer Chem Soci 72:5705–5712

    Article  CAS  Google Scholar 

  10. Nakamura M, Kobayashi M, Kuzuya N, Komatsu T, Mochizuka T (2006) Hydrophilic property of SiO2/TiO2 double layer films. Thin Solid Films 502:121–124

    Article  CAS  Google Scholar 

  11. Metroke TL, Parkhill RL, Knobbe ET (2011) Synthesis of Hybrid Organic-Inorganic Sol-Gel Coatings for Corrosion Resistance. MRS Proceedings, pp 576

  12. Saravanan P, Jayamoorthy K, Ananda Kumar S (2015) Switch-On fluorescence and photo-induced electron transfer of 3-aminopropyltriethoxysilane to ZnO Dual applications in sensors and antibacterial activity. Sensors Actuators B: Chem 221:784–791

    Article  CAS  Google Scholar 

  13. Karunakaran C, Jayabharathi J, Kalaiarasi V, Jayamoorthy K (2014) Enhancing photoluminescent behavior of 2-(naphthalen-1-yl)-1,4,5-triphenyl-1H-imidazole by ZnO and Bi2O3. Spectrochim Acta Part A: Mol Biomol Spectrosc 118:182–186

    Article  CAS  Google Scholar 

  14. Karunakaran C, Jayabharathi J, Brindha Devi K, Jayamoorthy K (2012) Photosensitization of Imidazole Derivative by ZnO Nanoparticle. J Fluoresc 22:1047–1053

    Article  CAS  PubMed  Google Scholar 

  15. Karunakaran C, Jayabharathi J, Jayamoorthy K (2013) Fluorescence enhancing and quenching of TiO2 by benzimidazole. Sensors Actuators B: Chem 188:207–211

    Article  CAS  Google Scholar 

  16. Karunakaran C, Jayabharathi J, Jayamoorthy K, Brindha Devi K (2012) Photoinduced electron-transfer from imidazole derivative to nano-semiconductors. Spectrochim Acta Part A: Mol Biomol Spectrosc 89:187–193

    Article  CAS  Google Scholar 

  17. Karunakaran C, Jayabharathi J, Jayamoorthy K (2013) Photoinduced electron transfer from benzimidazole to nano WO3, CuO and Fe2O3. A new approach on LUMOCB energy-binding efficiency relationship. Sensors Actuators B: Chem 182:514–520

    Article  CAS  Google Scholar 

  18. Suresh S, Jayamoorthy K, Karthikeyan S (2016) Fluorescence sensing of potential NLO material by bunsenite NiO nanoflakes: Room temperature magnetic studies. Sensors Actuators B: Chem 232:269–275

    Article  CAS  Google Scholar 

  19. Suresh S, Jayamoorthy K, Saravanan P, Karthikeyan S (2016) Switch-Off fluorescence of 5-amino-2-mercapto benzimidazole with Ag3O4 nanoparticles: Experimental and theoretical investigations. Sensors Actuators B: Chem 225:463–468

    Article  CAS  Google Scholar 

  20. Kelts LW, Effinger NJ, Melpolder SM (1986) Sol-gel chemistry studied by 1H and 29Si nuclear magnetic resonance. J Non-Cryst Solids 83:353–374

    Article  CAS  Google Scholar 

  21. Klein LC (1985) Sol-Gel processing of silicates. Ann Rev Mater Sci 15:227–248

    Article  CAS  Google Scholar 

  22. Kozlov GV, I͡Anovskiĭ IUG, Zaikov GE (2010) Structure and properties of particulate-filled polymer composites. Nova Science Publishers, New York

    Google Scholar 

  23. Chatterjee A, Islam MS (2008) Fabrication and characterization of TiO2–epoxy nanocomposite. Mater Sci Eng: A 487:574–585

    Article  CAS  Google Scholar 

  24. Sarathi R, Sahu RK, Rajeshkumar P (2007) Understanding the thermal, mechanical and electrical properties of epoxy nanocomposites. Mater Sci Eng: A 445–446:567–578

    Article  CAS  Google Scholar 

  25. Vijayan P, Puglia PD, Al-Maadeed MASA, Kenny JM, Thomas S (2017) Elastomer/thermoplastic modified epoxy nanocomposites: The hybrid effect of ‘micro’ and ‘nano’ scale. Mater Sci Eng: R: Reports 116:1–29

    Article  Google Scholar 

  26. Wang D, Leng Z, Yu H, Hüben M, Kollmann J, Oeser M (2017) Durability of epoxy-bonded TiO2-modified aggregate as a photocatalytic coating layer for asphalt pavement under vehicle tire polishing. Wear 382–383:1–7

    Article  CAS  Google Scholar 

  27. Atta AM, Al-Lohedan HA, El-saeed AM, Al-Shafey HI, Wahby MH (2017) Epoxy embedded with TiO2 nanogel composites as promising self-healing organic coatings of steel. Progress Org Coat 105:291–302

    Article  CAS  Google Scholar 

  28. Gu A, Liang G (2003) Thermal degradation behaviour and kinetic analysis of epoxy/montmorillonite nanocomposites. Polym Degrad Stab 80:383–391

    Article  CAS  Google Scholar 

  29. Zhai W, Wu Z-M, Wang X, Song P, He Y, Wang R-M (2015) Preparation of epoxy-acrylate copolymer@nano-TiO2 Pickering emulsion and its antibacterial activity. Progress Org Coat 87:122–128

    Article  CAS  Google Scholar 

  30. Schmidt H (1985) New type of non-crystalline solids between inorganic and organic materials. J Non-Cryst Solids 73:681–691

    Article  CAS  Google Scholar 

  31. Wang D, Leng Z, Hüben M, Oeser M, Steinauer B (2016) Photocatalytic pavements with epoxy-bonded TiO2-containing spreading material. Constr Build Mater 107:44–51

    Article  CAS  Google Scholar 

  32. Papanicolaou GC, Kontaxis LC, Manara AE (2016) Viscoelastic behaviour and modelling of nano and micro TiO2 powder-epoxy resin composites. Ciên Tecnol Mater 28:138–146

    Google Scholar 

  33. Shen GX, Chen YC, Lin CJ (2005) Corrosion protection of 316 L stainless steel by a TiO2 nanoparticle coating prepared by sol–gel method. Thin Solid Films 489:130–136

    Article  CAS  Google Scholar 

  34. Scholze H (1985) New possibilities for variation of glass structure. J Non-Cryst Solids 73:669–680

    Article  CAS  Google Scholar 

  35. Brinker CJ (1988) Hydrolysis and condensation of silicates: Effects on structure. J Non-Cryst Solids 100:31–50

    Article  CAS  Google Scholar 

  36. Schmidt H (1989) Organic modification of glass structure new glasses or new polymers?. J Non-Cryst Solids 112:419–423

    Article  Google Scholar 

  37. Khramov AN, Balbyshev VN, Voevodin NN, Donley MS (2003) Nanostructured sol–gel derived conversion coatings based on epoxy- and amino-silanes. Progress Org Coat 47:207–213

    Article  CAS  Google Scholar 

  38. Schmidt H, Wolter H (1990) Organically modified ceramics and their applications. J Non-Cryst Solids 121:428–435

    Article  CAS  Google Scholar 

  39. Saravanan P, Jayamoorthy K, Ananda Kumar S (2016) Design and characterization of non-toxic nano-hybrid coatings for corrosion and fouling resistance. J Sci: Adv Mater Dev 1:367–378

    Google Scholar 

  40. Saravanan P, Duraibabu D, Jayamoorthy K, Suresh S, Kumar SA (2017) Twin applications of tetra-functional epoxy monomers for anticorrosion and antifouling studies, Silicon

  41. Mackenzie JD (1982) Glasses from melts and glasses from gels, a comparison. J Non-Cryst Solids 48:1–10

    Article  CAS  Google Scholar 

  42. Saha AK, Rapoport H, Schultz P (1989) 1,1’-Carbonylbis(3-methylimidazolium) triflate: an efficient reagent for aminoacylations. J Amer Chem Soc 111:4856–4859

    Article  CAS  Google Scholar 

  43. Machrafi H, Lebon G, Iorio CS (2016) Effect of volume-fraction dependent agglomeration of nanoparticles on the thermal conductivity of nanocomposites: Applications to epoxy resins, filled by SiO2, AlN and MgO nanoparticles. Compos Sci Technol 130:78–87

    Article  CAS  Google Scholar 

  44. Hench LL, Ulrich DR (1984) University of Florida. Department of Materials Science and Engineering, University of Florida. College of Engineering, Ultrastructure processing of ceramics, glasses, and composites. Wiley, New York

    Google Scholar 

  45. Nayak RK, Dash A, Ray BC (2014) Effect of epoxy modifiers (Al2O3/SiO2/TiO2) on mechanical performance of epoxy/glass fiber hybrid composites. Proced Mater Sci 6:1359–1364

    Article  CAS  Google Scholar 

  46. Menard KP (2008) Dynamic mechanical analysis: a practical introduction. CRC Press, Boca Raton

    Book  Google Scholar 

  47. Wang S, Li Y, Fei X, Sun M, Zhang C, Li Y, Yang Q, Hong X (2011) Preparation of a durable superhydrophobic membrane by electrospinning poly (vinylidene fluoride) (PVDF) mixed with epoxy–siloxane modified SiO2 nanoparticles: A possible route to superhydrophobic surfaces with low water sliding angle and high water contact angle. J Colloid Interface Sci 359:380– 388

    Article  CAS  PubMed  Google Scholar 

  48. Wu Y, Song L, Hu Y (2011) Fabrication and characterization of TiO2Nanotube–epoxy nanocomposites. Ind Eng Chem Res 50:11988–11995

    Article  CAS  Google Scholar 

  49. Christy A, Purohit R, Rana RS, Singh SK, Rana S (2017) Development and analysis of epoxy/nano sio2 polymer matrix composite fabricated by ultrasonic vibration assisted processing. Mater Today: Proc 4:2748–2754

    Article  Google Scholar 

  50. Landowski M, Strugaa G, Budzik M, Imielińska K (2017) Impact damage in SiO2 nanoparticle enhanced epoxy – Carbon fibre composites. Compos Part B: Eng 113:91–99

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author would like to show his gratitude to Prof. Dr. Mohsen Moussavi, for sharing his pearls of wisdom achieved throughout six decades of work and experience, with the author during the course of this research, and before and after. The author would also like to thank Ms. Faranak Tabesh who provided insight and expertise that greatly assisted the preparation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sina Matavos-Aramyan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Matavos-Aramyan, S. Preparation of Titania/Silica Core-Shell Hybrid Nanocomposites for 2024 Al-Alloy Corrosion Protection and Investigation of their Mechanical and Thermal Stability. Silicon 10, 1601–1612 (2018). https://doi.org/10.1007/s12633-017-9644-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-017-9644-8

Keywords

  • Core-shell
  • Hybrid coatings
  • Nanocomposite
  • Titania
  • Silica
  • Sol-gel