Skip to main content
Log in

Influence of Annealing Temperature on Structural and dc Electrical Properties of SnO2 Thin Films for Schottky Barrier Diodes

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

This paper reports about the influence of annealing temperature on the structural, morphological, optical and electrical properties of SnO2 thin films prepared by the spin-coating method. The structural analysis reveals the presence of rutile SnO2 with tetragonal structure and its defects are reduced in higher annealing temperatures. SEM images show that the size of the grains was improved due to increase in annealing temperature. From UV-visible analysis, band gap energy (Eg), refractive index (n), and extinction coefficient (k) are estimated. The band gap energy increases from 3.46 to 3.54 eV with annealing temperatures. dc analysis shows that the Arrhenius conduction mechanism has a profound influence on the electrical conductivity and varies in the range 1.08–6.80 × 10− 8(Ω cm)− 1 with annealing temperature. The Al/n-SnO2/p-Si Schottky barrier diode parameters such as ideality factor (n), barrier height (4ΦB), leakage current (I0) and series resistance (Rs) were studied by the I-V method as a function of annealing temperature as per the Thermionic Emission method (TE). The barrier height varies from 0.84 to 0.73 eV and the device ideality has improved at higher annealing temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ozer M, Yldiz DE, Altndal S, Bulbu MM (2007) Temperature dependence of characteristic parameters of the Au/SnO2/n-Si (MIS) Schottky diodes. Solid State Electron 51:941–949

    Article  CAS  Google Scholar 

  2. Ozkartal A, Temirci C (2016) Relationship between photovoltaic and diode characteristic parameters in the Sn/p-Si Schottky type photovoltaics. Sol Energy 132:96–102

    Article  CAS  Google Scholar 

  3. Altuntas H, Bengi A, Asar T, Aydemir U, Sarkavak B, Ozen Y, Altndal S, Ozcelik S (2010) Interface state density analyzing of Au/TiO2(rutile)/n–Si Schottky barrier diode. Surf Interface Anal 42:1257–1260

    Article  CAS  Google Scholar 

  4. Liu Y, Yu J, Lai PT (2014) Investigation of WO3/ZnO thin-film heterojunction based Schottky diodes for H2 gas sensing. Int J Hydrogen energy 39:10313–10319

    Article  CAS  Google Scholar 

  5. Gokcen M, Altndal S, Karaman M, Aydemir U (2011) Forward and reverse bias current-voltage characteristics of Au/n-Si Schottky barrier diodes with and without SnO2 insulator layer. Physica B 406:4119–4123

    Article  CAS  Google Scholar 

  6. Gupta RK, Yakuphanoglu F (2013) Analysis of device parameters of Al/In2O3/p-Si Schottky diode. Microelectron Eng 105:13–17

    Article  CAS  Google Scholar 

  7. Chou TH, Fang YK, Chiang YT, Lin CI, Lin KC (2008) Improving hydrogen detecting performance of a Pd/n-LTPS/glass thin film Schottky diode with a TiO2 interface layer. Sens Actuators B 134:539–544

    Article  CAS  Google Scholar 

  8. Zhu M, Zhang L, Li X, He Y, Li X, Guo F, Zang X, Wang K, Xie D, Li X, Weief B, Zhu H (2015) TiO2 enhanced ultraviolet detection based on a graphene/Si Schottky diode. J Mater Chem A 3:8133–8138

    Article  CAS  Google Scholar 

  9. Shen L, Cheng X, Wang Z, Cao D, Li Z, Wang Q, Zhang D, Liab J, Yu Y (2016) Negative differential resistance in the I–V curves of Al2O3/AlGaN/GaN MIS structure. RSC Adv 6:5671–5676

    Article  CAS  Google Scholar 

  10. Ding Y, Xu X, Bhalla A, Yang X, Chen J, Chen C (2016) Switchable diode effect in BaZrO3 thin film. RSC Adv 6:60074–60079

    Article  CAS  Google Scholar 

  11. Aydogan S, Grilli ML, Yilmaz M, Caldiran Z, Kacus H (2017) A Facile growth of spray based ZnO films and device performance investigation for Schottky diodes: determination of interface state density distribution. J Alloys Compd 708:55–66

    Article  CAS  Google Scholar 

  12. Selman AM, Husham M (2016) Calcination induced phase transformation of TiO2 nanostructures and fabricated a Schottky diode as humidity sensor based on rutile phase. Sens Bio-Sens Res 11:8–13

    Article  Google Scholar 

  13. Park YR, Nam E, Kim YS (2008) Organic light-emitting devices with in-doped (4 at. %) ZnO thin films as the anodic electrode. Jpn J Appl Phys 47:468–471

    Article  CAS  Google Scholar 

  14. Xie T, Hasan MR, Qiu B, Arinze ES, Nguyen N, Motayed A, Thon SM (2015) High-performing visible-blind photodetectors based on SnO2/CuO nanoheterojunctions. Appl Phys Lett 107:241108–241113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Xiong L, Qin M, Yang G, Guo Y, Lei H, Liu Q, Ke W, Tao H, Qin P, Li S, Yub H, Fang G (2016) Performance enhancement of high temperature SnO2-based planar perovskite solar cells: electrical characterization and mechanism understanding. J Mater Chem A 4:8374–8385

    Article  CAS  Google Scholar 

  16. Cheng Y, Yang R, Zheng J, Wang ZL, Xiong P (2012) Characterizing individual SnO2 nanobelt field-effect transistors and their intrinsic responses to hydrogen and ambient gases. Mater Chem Phys 137:372–380

    Article  CAS  Google Scholar 

  17. Baris B (2014) Analysis of device parameters for Au/tin oxide/n-Si(1 0 0) metal oxide semiconductor (MOS) diodes. Physica B 438:65–69

    Article  CAS  Google Scholar 

  18. Jin I, Zhang J, Kemal RE, Luo Y, Bao P, Althobaiti M, Hesp D, Dhanak VR, Zheng Z, Mitrovic IZ, Hall S, Song A (2016) Effects of annealing conditions on resistive switching characteristics of SnOx thin films. J Alloys Compd 673:54–59

    Article  CAS  Google Scholar 

  19. Priyadarshini DM, Mannam R, Rao MSR, Das Gupta N (2017) Effect of annealing ambient on SnO2 thin film transistors. Appl Surf Sci 418:414–417

    Article  CAS  Google Scholar 

  20. Park KY, Kim GW, Seo YJ, Henn Koo LB (2012) Effect of annealing temperature on properties of p-type conducting Al/SnO2/Al multilayer thin films deposited by sputtering. J Ceram Process Res 13:385–389

    Google Scholar 

  21. Ke W, Zhao D, Cimaroli AJ, Grice CR, Qin P, Liu Q, Xiong L, Yan Y, Fang G (2015) Effects of annealing temperature of tin oxide electron selective layers on the performance of perovskite solar cells. J Mater Chem A 3:24163–24168

    Article  CAS  Google Scholar 

  22. Orimi RL, Maghouli M (2016) Optical characterization of SnO2 nanostructure thin films, annealed at different temperatures. Optik 127:263–266

    Article  CAS  Google Scholar 

  23. Khandelwal R, Singh AP, Kapoor A, Grigorescu S, Miglietta P, Stankova NE, Perrone A (2009) Effects of deposition temperature on the structural and morphological properties of SnO2 films fabricated by pulsed laser deposition. Opt Laser Technol 41: 89–93

    Article  CAS  Google Scholar 

  24. Yang W, Yu S, Zhang Y, Zhang W (2013) Properties of Sb-doped SnO2 transparent conductive thin films deposited by radio-frequency magnetron sputtering. Thin Solid Films 542:285–288

    Article  CAS  Google Scholar 

  25. Patil GE, Kajale DD, Chavan DN, Pawar NK, Ahire PT, Shine SD, Gaikwad VB, Jain GH (2011) Synthesis, characterization and gas sensing performance of SnO2 thin films prepared by spray pyrolysis. Bull Mater Sci 34:1–9

    Article  CAS  Google Scholar 

  26. Chen M, Xia X, Wang Z, Li Y, Li J, Gu C (2008) Rectifying behavior of individual SnO2 nanowire by different metal electrode contacts. Microelectron Eng 85:1379–1381

    Article  CAS  Google Scholar 

  27. Varghese OK, Malhotra LK (2000) Studies of ambient dependent electrical behavior of nanocrystalline SnO2 thin films using impedance spectroscopy. J Appl Phys 87:7457–7465

    Article  CAS  Google Scholar 

  28. Savarimuthu E, Sankarasubramanian N, Subramanian B, Ramamurthy S (2006) Preparation and characterization of nanostructured tin oxide (SnO2) films by sol–gel spin coating technique. Surf Eng 22:268–276

    Article  CAS  Google Scholar 

  29. Yu X, Mark TJ, Facchetti A (2016) Metal oxides for optoelectronic applications. Nat Mater 15:383–396

    Article  CAS  PubMed  Google Scholar 

  30. Patterson A (1939) The Scherrer formula for X-ray particle size determination. Phys Rev 56:978–982

    Article  CAS  Google Scholar 

  31. Chen HL, Lu YM, Hwang WS (2005) Effect of film thickness on structural and electrical properties of sputter-deposited nickel oxide films. Mater Trans 46:872–879

    Article  CAS  Google Scholar 

  32. Mahalingam T, John VS, Ravi G, Sebastian PJ (2002) Microstructural characterization of electro synthesized ZnTe thin films. Cryst Res Technol 37:329–339

    Article  CAS  Google Scholar 

  33. Mehraj S, Ansari MS, Al-Ghamdi AA (2016) Annealing dependent oxygen vacancies in SnO2 nanoparticles: Structural, electrical and their ferromagnetic behaviour. Mater Chem Phys 171: 109–118

    Article  CAS  Google Scholar 

  34. Nithiyanantham U, Ramadoss A, Kundu S (2016) Synthesis and characterization of DNA fenced, self-assembled SnO2 nano-assemblies for super capacitor applications. Dalton Trans 45:3506–3521

    Article  CAS  PubMed  Google Scholar 

  35. Tauc J (1968) Optical properties and electronic structure of amorphous Ge and Si. Mater Res Bull 3:37–46

    Article  CAS  Google Scholar 

  36. Chopra KL, Major S, Pandya DK (1983) Transparent conductors-A status review. Thin Solid Films 102:1–46

    Article  CAS  Google Scholar 

  37. Vinodkumar RR, Navas I, Porsezian KP, Unnikrishnan NV, Pillai VPM (2014) Structural, spectroscopic and electrical studies of nanostructured porous ZnO thin films prepared by pulsed laser deposition. Spectrochim Acta A: Mol Biomol Spectrosc 118:724–732

    Article  CAS  Google Scholar 

  38. Rahal A, Benhaoua A, Jlassi M, Benhaoua B (2015) Structural, optical and electrical properties studies of ultrasonically deposited tin oxide (SnO2) thin films with different substrate temperatures. Superlattice Microst 86:403–411

    Article  CAS  Google Scholar 

  39. Sze SM, Ng KK (2006) Physics of semiconductor devices, 3rd edn. Wiley, New York

    Book  Google Scholar 

  40. Caglar Y, Caglar M, Ilican S, Yakuphanoglu F (2009) Determination of the electronic parameters of nanostructure SnO2/p-Si diode. Microelectron Eng 86:2072–2077

    Article  CAS  Google Scholar 

  41. Karadeniz S, Tugluoglu N, Serin T (2004) Substrate temperature dependence of series resistance in Al/SnO2/p-Si (111) Schottky diodes prepared by spray deposition method. Appl Surf Sci 233: 5–11

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Ravikumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ravikumar, K., Agilan, S., Muthukumarasamy, N. et al. Influence of Annealing Temperature on Structural and dc Electrical Properties of SnO2 Thin Films for Schottky Barrier Diodes. Silicon 10, 1591–1599 (2018). https://doi.org/10.1007/s12633-017-9643-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-017-9643-9

Keywords

Navigation