Skip to main content

Optical and Electrical Properties of Nd3+ Doped TeBiY Borate Glasses

Abstract

60B2O3-30Bi2O3-5TeO2-(5–x)Y2O3-xNd2O3 mole% (0 ≤ × ≤ 4) glasses were prepared by the usual experimental glass-melting procedures. This work was carried out to study the effect of Nd2 O 3 on the properties of the glasses studied and thereby their structure. The effect of the replacement of Y2O3 by Nd2O3 on the optical and electrical properties of the glass samples was studied. The results obtained showed that the values of density, oxygen packing density, concentration of Nd ions and field strength were found to increase with increase of the Nd2O3. On the other hand the molar volume, inter-nuclear distance and polaron radius showed the opposite behavior with increasing Nd2O3 content. The results also showed that the direct and indirect optical band gap were found to increase which indicate that increasing the concentration of Nd2O3 leads to a change in the structure of glasses induced by Nd2O3. Dc and ac conductivities values were found to increase, whereas the dc activation energy decreases, with increasing Nd2O3 concentration. An increase in the dielectric constant values with increasing Nd2O3 content is observed. The results suggest that the CBH model seems to be the appropriate model for the ac conductivity in the studied glasses.

This is a preview of subscription content, access via your institution.

References

  1. Dumbaugh W (1978) Phys Chem Glasses 19:121

    CAS  Google Scholar 

  2. Simon S, Todea M (2006) J Non-Cryst Solids 352:2947

    Article  CAS  Google Scholar 

  3. Venkataraman B, Varma KBR (2006) Opt Mater (Amsterdam, Neth) 28:1423

    Article  CAS  Google Scholar 

  4. Onishi M, Kyoto M, Watanabe M (1991) Jpn J Appl Phys Part 2(30):L988

    Article  Google Scholar 

  5. Honma T, Benino Y, Komatsu T, Sato R, Dimitrov V (2002) Phys Chem Glasses 43:32–40

    CAS  Google Scholar 

  6. Dumbaugh WH, Lapp JC (1992) J Am Ceram Soc 75:2315

    Article  CAS  Google Scholar 

  7. Pal I, Agarwal A, Sanghi S, Aggarwal MP, Bhardwaj S (2014) J Alloys Comp 587:332–338

  8. Hager IZ, El-Mallawany R, Bulou A (2011) Physica B 406:972

    Article  CAS  Google Scholar 

  9. Naftaly M, Jha A (2000) J Appl Phys 87:2098

    Article  CAS  Google Scholar 

  10. Lakshminarayana G, Qiu1 J, Brik MG, Kumar GA, Kityk IV (2008) J Phys Condens Matter 20:375104

  11. Jacob R, Weber MJ (1979) IEEE J Quantum Electron 12:102

    Article  Google Scholar 

  12. Ali AA, Shaaban MH (2011) Bull Mater Sci 34(3):491

    Article  CAS  Google Scholar 

  13. Shaaban MH, Ali AA, El-Nimr LK (2006) Mater Chem Phys 96:423

    Article  CAS  Google Scholar 

  14. Ali AA, Shaaban MH (2010) Solid State Sci 12:2148

    Article  CAS  Google Scholar 

  15. Reddy RR, Nazeer Ahammed Y, Abdul Azeem P, Rama Gopal K, Rao TVR, Buddhudu S, Sooraj Hussain N (2003) J Quant Spectrosc Radiat Transfer 77:149–163

    Article  CAS  Google Scholar 

  16. Altaf M, Chaudhry MA (2010) J Mod Phys 1:201–205

    Article  CAS  Google Scholar 

  17. Eraiah B, Bhat SG (2007) J Phys Chem Solids 68:581–585

    Article  CAS  Google Scholar 

  18. Karthikeyana B, Mohanb S (2004) Mat Res Bull 39:1507–1515

    Article  CAS  Google Scholar 

  19. Gruber JB, Hills ME, Allik TH, Jayasankar CK, Quagliano JR, Richardson FS (1990) Phys Rev B 41:7999

    Article  CAS  Google Scholar 

  20. Yousef E, Hotzel M, Russel C (2007) J Non-Cryst Solids 353:333

    Article  CAS  Google Scholar 

  21. Davis EA, Mott NF (1970) Philos Mag 22:903

    Article  CAS  Google Scholar 

  22. Tauc J (1974) Amorphous and liquid semiconductors, 1st edn. Plenum, London

    Book  Google Scholar 

  23. Urbach F (1953) Phys Rev 92:1324

    Article  CAS  Google Scholar 

  24. Austin IG, Mott NF (1969) Adv Phys 18:41

    Article  CAS  Google Scholar 

  25. Nelson C, Furukawa I, Nelson WB (1983) Mater Res Bull 18:959

    Article  CAS  Google Scholar 

  26. Shaaban M, Ali A (2014) J Elect Mat 43(11):4023

    Article  CAS  Google Scholar 

  27. Murugaraj R, Govindaraj G, George D (2003) Mater Lett 57:1656

    Article  CAS  Google Scholar 

  28. Jonscher A (1977) Nature 267:673

    Article  CAS  Google Scholar 

  29. Lanfredi S, Saia P, Lebullenger R, Hernandez A (2002) Solid State Ion 146:329

    Article  CAS  Google Scholar 

  30. Sidebottom D (2003) J Phys 15:S1585

    CAS  Google Scholar 

  31. Elliot S (1987) Adv Phys 36:53

    Google Scholar 

  32. Lavín V, Rodríguez-Mendoza U, Martn I, Rodríguez V (2003) J Non-Cryst Solids 319:200

    Article  CAS  Google Scholar 

  33. Sidebottom DL (2003) J Phys Condens Matter 15:S1585

    Article  CAS  Google Scholar 

  34. Prashant Kumar M, Sankarappa T, Kumar S (2008) J Alloys Compd 464:393e398

    Google Scholar 

  35. Durga DK, Veeraiah N (2002) Physica B 324:127

    Article  CAS  Google Scholar 

  36. Berkemeier F, Voss S, Imre AW, Mehrer H (2005) Solids 351:3816

    CAS  Google Scholar 

  37. Almond DP, Duncan GK, West AR (1983) Solid State Ionics 8:159

    Article  CAS  Google Scholar 

  38. Sanghi S, Rani S, Agarwal A, Seth VP (2009) Phys B 404:1969

    Article  CAS  Google Scholar 

  39. Duhan S, Sanghi S, Agarwal A, Sheoran A, Rani S (2009) Phys B 404:1648

    Article  CAS  Google Scholar 

  40. Howell FS, Bose RA, Macedo PB, Moynihan CT (1974) J Phys Chem 78:639

    Article  CAS  Google Scholar 

  41. Nadkarni GS, Simmons JG (1970) J Appl Phys 41:545

    Article  CAS  Google Scholar 

  42. Ghosh S, Ghosh A (2007) J Non-Cryst Solids 353:1287

    Article  CAS  Google Scholar 

  43. Dutta A, Ghosh A (2005) J Non-Cryst Solids 351:203

    Article  CAS  Google Scholar 

  44. Lanfredi S, Saia PS, Lebullenger R, Hernandes AC (2002) Solid State Ionics 146:329

    Article  CAS  Google Scholar 

  45. Dutta A, Ghosh A (2005) J Non-Cryst Solids 351:203–208

    Article  CAS  Google Scholar 

  46. Ahlawat N, Agarwal A, Sanghi S, Kishore N (2009) Solid State Ionics 180:1356

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Ali.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ali, A.A., Shaaban, M.H. Optical and Electrical Properties of Nd3+ Doped TeBiY Borate Glasses. Silicon 10, 1503–1511 (2018). https://doi.org/10.1007/s12633-017-9633-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-017-9633-y

Keywords

  • Glass
  • Optical properties
  • Electrical characterization