Silicon

pp 1–7 | Cite as

The Change of Structural, Optical and Thermal Properties of a PVDF/PVC Blend Containing ZnO Nanoparticles

Original Paper
  • 15 Downloads

Abstract

Nanocomposites consisting of a polyvinylidene fluoride (PVDF)/polyvinyl chloride (PVC) blend containing zinc oxide (ZnO) nanoparticles were prepared. The changes of the structural, optical and thermal properties of the PVDF/PVC blend before and after addition of ZnO were studied. The shift of intensity in IR bands suggested an interaction and compatibility between the blend and ZnO. The structural properties, crystallinity and grain size of the samples were studied using X-ray diffraction. The average grain size was approximately 16 nm confirmed by TEM observations. The X-ray peak positions of ZnO in doped samples were located in the same positions as those of pure ZnO indicating the crystal structure of ZnO was not altered by its incorporation into PVDF/PVC. The estimated values of the optical energy gap from UV/Vis spectra for indirect transition decrease with increasing ZnO due to charge transfer between PVDF/PVC and ZnO nanoparticles. The thermogravimetric analysis curves showed nearly identical behaviors for all samples. Samples that contained ZnO exhibited less weight loss compared to the pure blend attributed to crosslinking formation between the blend and ZnO. Transmission electron microscopy (TEM) images revealed that ZnO was uniformly distributed inside PVDF/PVC polymeric matrices and was superimposed on an amorphous background.

Keywords

PVDF/PVC blend ZnO nanoparticles FTIR X-ray TEM Thermal properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgment

This work was supported by the Deanship of scientific research (DSR), King Abdulaziz University, Jeddah, under grant No.(67459). The authors, therefore, gratefully acknowledge the DSR technical and financial support.

References

  1. 1.
    Yang T, Cai W, Qin D, Wang E, Lan L, Gong X, Peng J, Cao Y (2010) J Phys Chem C 11:6849CrossRefGoogle Scholar
  2. 2.
    Joo J, Chow B Y, Prakash M, Boyden E S, Jacobson J M (2011) Nat Mat 10:596CrossRefGoogle Scholar
  3. 3.
    Vinogradov A, Holloway F (1999) Ferromagnetic 226:169Google Scholar
  4. 4.
    Loh K J, Lynch J P, Shim B S, Kotov N A (2008) J Intell Mater Syst Struct 19:747CrossRefGoogle Scholar
  5. 5.
    Fernandes D M, Hechenleitner A A W, Lima S M, Andrade L H C, Caires A R L, Gomez Pineda E A (2011) Mater Chem Phys 128:371CrossRefGoogle Scholar
  6. 6.
    Sil D, Chakrabarti S (2010) Solar Energy 84:476CrossRefGoogle Scholar
  7. 7.
    Dinh H C, Yeo I H, Cho W, Mho S (2010) ECS Trans 28:167CrossRefGoogle Scholar
  8. 8.
    Seil J T, Webster T J (2011) Acta Biomater 7:2579CrossRefGoogle Scholar
  9. 9.
    Rahman M Y A, Ahmadb A, Mangsor M R, Wahab S A (2008) Physica B 403:3414CrossRefGoogle Scholar
  10. 10.
    Kotharangannagari V K, Krishnan K (2016) Mater Des 109:590CrossRefGoogle Scholar
  11. 11.
    He Z, Xia Y, Tang B, Jiang X, Su J (2016) Mater Lett 184:148CrossRefGoogle Scholar
  12. 12.
    Singh S, Thiyagarajan P, Kant K M, Anita D, Thirupathiah S, Rama N, Tiwari B, Kottaisamy M, Rao M S R (2007) J Phys D: Appl Phys 40:6312CrossRefGoogle Scholar
  13. 13.
    Xiong M, Gu G, You B, Wu L (2003) J Appl Polym Sci 90:1923CrossRefGoogle Scholar
  14. 14.
    Lee J, Bhattacharyya D, Easteal A J, Metson J B (2008) Curr Appl Phys 8:42CrossRefGoogle Scholar
  15. 15.
    Abdelrazek E M, Elashmawi I S, Soliman M A, Aly A (2009) J Vinyl Addit Technol 15:171CrossRefGoogle Scholar
  16. 16.
    Elashmawi I S, Hakeem N A, Marei L K, Hanna F F (2010) Physica B 405:4163CrossRefGoogle Scholar
  17. 17.
    Indra Devi P, Ramachandran K (2011) J Exper Nanosci 6:281CrossRefGoogle Scholar
  18. 18.
    Nallasamy P, Mohan S (2005) Indian J Pure Appl Phys 43:84Google Scholar
  19. 19.
    Nakhmanson S M, Korlacki R, Johnston J T, Ducharme S, Ge Z, Takacs J M (2010) Phys Rev 81:174120CrossRefGoogle Scholar
  20. 20.
    Fekete E, Foldes E, Pukanszky B (2005) Eur Polym J 41:727CrossRefGoogle Scholar
  21. 21.
    Esterly D M, Love B J (2004) J Polym Sci Polym Phys Ed 42:91CrossRefGoogle Scholar
  22. 22.
    Wen B, Huang Y, Boland JJ (2008) J Phys Chem C 112:106CrossRefGoogle Scholar
  23. 23.
    Kamalianfar A, Halim S A, Naseri M G, Navasery M, Din F U, Zahedi J A M, Lim KP, Saion EB, Chen CK, Monfared AL (2013) Int J Electrochem Sci 8:7724Google Scholar
  24. 24.
    Kamalianfar A, Halim S A, Jahromi S P, Navasery M, Din FU, Lim K P, Chen SK, Zahedi JAM (2012) Chin Phys Lett 29:128102CrossRefGoogle Scholar
  25. 25.
    Dahshan A, Aly KA (2015) J Non-Cryst Solids 408:62CrossRefGoogle Scholar
  26. 26.
    Akl AA, Hassanien A S (2015) Superlatt Microstruct 85:67CrossRefGoogle Scholar
  27. 27.
    Indolia A P, Gaur M S (2013) J Polym Res 20:43CrossRefGoogle Scholar
  28. 28.
    Thutulpalli G M, Tomlin S G (1976) J Phys D: Appl Phys 9:1639CrossRefGoogle Scholar
  29. 29.
    Elashmawi I S, Abdelghany A M, Hakeem N A (2013) J Mater Sci: Mater Electron 24:2956Google Scholar
  30. 30.
    Coats A W, Redfern J P (1964) Nature 201:68CrossRefGoogle Scholar
  31. 31.
    Al-Resayes S I (2010) Arab J Chem 3:3CrossRefGoogle Scholar
  32. 32.
    Tonbul Y, Yurdakoc K (2001) Turk J Chem 25:333Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Department of Physics, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations