Skip to main content
Log in

Synthesizing and Characterizing of Gelatin-Chitosan-Bioactive Glass (58s) Scaffolds for Bone Tissue Engineering

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Nowadays repairing and regenerating of lost or damaged tissue still remain an important challenge in clinical techniques. Due to the variety of available bone grafts, different types of biodegradable materials are being utilized as a scaffold implant. The basic structure of the bone is an excellent natural composite which contains varieties of polymers and ceramics; therefore, it is important to manufacture a bone scaffold featuring sufficient mechanical strength, a good degree of biocompatibility, biodegradation and an increased rate of formation of new tissue. Bioactive glass has an appealing characteristic which can be utilized for repairing purposes as well as to cause a rapid response from the bone graft. In this study, a composite scaffold based on polymer matrix (gelatin-chitosan) and bioactive glass 58s was synthesized in the laboratory. Five samples of polymer scaffold with different proportions of bioactive glass were designed and investigated. The scaffolds were dried with freeze dryer, and a spongy structure was generated. The composite survey was carried out through FTIR technique to examine the crystallization of the structure, XRD to examine the morphology of the porosities, and SEM to examine the size of porosities and formation of apatite. This study reveals that the size of porosities is about 170–320 μm, which is suitable for angiogenesis and cell growth in the bone. The combination of enhanced properties and the formation of apatite on the surface of the scaffolds make them an ideal option as a bone substitute.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alaribe FN, Manoto SL, Motaung SCKM (2016) Scaffolds from biomaterials: advantages and limitations in bone and tissue engineering. Biologia (Bratisl) 71:353–366. https://doi.org/10.1515/biolog-2016-0056

    Article  Google Scholar 

  2. Rong D, Chen P, Yang Y et al (2016) Fabrication of gelatin/PCL electrospun fiber mat with bone powder and the study of its biocompatibility. J Funct Biomater. https://doi.org/10.3390/jfb7010006

  3. Dorea HC, McLaughlin RM, Cantwell HD et al (2005) Evaluation of healing in feline femoral defects filled with cancellous autograft, cancellous allograft or Bioglass. VCOT Arch 18:157–168

    CAS  Google Scholar 

  4. Boal D, Boal DH (2012) Mechanics of the cell. Cambridge University Press, Cambridge

    Book  Google Scholar 

  5. Lee S-C, Chen J-F, Wu C-T, Lee S-T (2009) In situ local autograft for instrumented lower lumbar or lumbosacral posterolateral fusion. J Clin Neurosci 16:37–43. https://doi.org/10.1016/j.jocn.2008.02.009

    Article  PubMed  Google Scholar 

  6. Damien CJ, Parsons JR (1991) Bone graft and bone graft substitutes: a review of current technology and applications. J Appl Biomater 2:187–208. https://doi.org/10.1002/jab.770020307

    Article  CAS  PubMed  Google Scholar 

  7. Killion JA, Kehoe S, Geever LM et al (2013) Hydrogel/bioactive glass composites for bone regeneration applications: synthesis and characterisation. Mater Sci Eng C 33:4203–4212. https://doi.org/10.1016/j.msec.2013.06.013

    Article  CAS  Google Scholar 

  8. Dimitriou R, Jones E, McGonagle D, Giannoudis PV (2011) Bone regeneration: current concepts and future directions. BMC Med 9:66. https://doi.org/10.1186/1741-7015-9-66

    Article  PubMed  PubMed Central  Google Scholar 

  9. Park JB, Bronzino JD (2002) Biomaterials: principles and applications. CRC Press, Boca Raton

    Book  Google Scholar 

  10. Enhancing bone healing and regeneration: present and future perspectives in veterinary orthopaedics. In: PubMed J. https://ncbi.nlm.nih.gov/labs/articles/20422117/. Accessed 16 Jun 2017

  11. Schieker M, Seitz H, Drosse I, et al (2006) Biomaterials as scaffold for bone tissue engineering. Eur J Trauma 32:114–124. https://doi.org/10.1007/s00068-006-6047-8

    Article  Google Scholar 

  12. Yannas IV (2005) Regenerative medicine II: clinical and preclinical applications. Springer Science & Business Media

  13. Habraken WJEM, Wolke JGC, Jansen JA (2007) Ceramic composites as matrices and scaffolds for drug delivery in tissue engineering. Adv Drug Deliv Rev 59:234–248. https://doi.org/10.1016/j.addr.2007.03.011

    Article  CAS  PubMed  Google Scholar 

  14. Prabaharan M, Sivashankari PR (2016) Prospects of bioactive chitosan-based scaffolds in tissue engineering and regenerative medicine. Polym Compos Mater. https://doi.org/10.1007/978-81-322-2511-9_2

  15. Olszta MJ, Cheng X, Jee SS et al (2007) Bone structure and formation: a new perspective. Mater Sci Eng R Rep 58:77–116. https://doi.org/10.1016/j.mser.2007.05.001

    Article  CAS  Google Scholar 

  16. Linhart W, Peters F, Lehmann W et al (2001) Biologically and chemically optimized composites of carbonated apatite and polyglycolide as bone substitution materials. J Biomed Mater Res 54:162–171. https://doi.org/10.1002/1097-4636(200102)54:2<162::AID-JBM2>3.0.CO;2-3

    Article  CAS  PubMed  Google Scholar 

  17. Durucan C, Brown PW (2000) Low temperature formation of calcium-deficient hydroxyapatite-PLA/PLGA composites. J Biomed Mater Res 51:717–725. https://doi.org/10.1002/1097-4636(20000915)51:4<717::AID-JBM21>3.0.CO;2-Q

    Article  CAS  PubMed  Google Scholar 

  18. Hench LL, Splinter RJ, Allen WC, Greenlee TK (1971) Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res 5:117–141. https://doi.org/10.1002/jbm.820050611

    Article  Google Scholar 

  19. Day RM, Boccaccini AR, Shurey S et al (2004) Assessment of polyglycolic acid mesh and bioactive glass for soft-tissue engineering scaffolds. Biomaterials 25:5857–5866. https://doi.org/10.1016/j.biomaterials.2004.01.043

    Article  CAS  PubMed  Google Scholar 

  20. Verrier S, Blaker JJ, Maquet V et al (2004) PDLLA/Bioglass®;composites for soft-tissue and hard-tissue engineering: an in vitro cell biology assessment. Biomaterials 25:3013–3021. https://doi.org/10.1016/j.biomaterials.2003.09.081

    Article  CAS  PubMed  Google Scholar 

  21. Olmo N, Martın AI, Salinas AJ et al (2003) Bioactive sol–gel glasses with and without a hydroxycarbonate apatite layer as substrates for osteoblast cell adhesion and proliferation. Biomaterials 24:3383–3393. https://doi.org/10.1016/S0142-9612(03)00200-X

    Article  CAS  PubMed  Google Scholar 

  22. Muzzarelli R, Tarsi R, Filippini O et al (1990) Antimicrobial properties of N-carboxybutyl chitosan. Antimicrob Agents Chemother 34:2019–2023. https://doi.org/10.1128/AAC.34.10.2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jayakumar R, Prabaharan M, Reis R L, Mano J F (2005) Graft copolymerized chitosan—present status and applications. Carbohydr Polym 62:142–158. https://doi.org/10.1016/j.carbpol.2005.07.017

    Article  CAS  Google Scholar 

  24. Muzzarelli R, Baldassarre V, Conti F et al (1988) Biological activity of chitosan: ultrastructural study. Biomaterials 9:247–252. https://doi.org/10.1016/0142-9612(88)90092-0

    Article  CAS  PubMed  Google Scholar 

  25. Jiankang H, Dichen L, Yaxiong L et al (2009) Preparation of chitosan–gelatin hybrid scaffolds with well-organized microstructures for hepatic tissue engineering. Acta Biomater 5:453–461. https://doi.org/10.1016/j.actbio.2008.07.002

    Article  CAS  PubMed  Google Scholar 

  26. Taboas JM, Maddox RD, Krebsbach PH, Hollister SJ (2003) Indirect solid free form fabrication of local and global porous, biomimetic and composite 3D polymer-ceramic scaffolds. Biomaterials 24:181–194. https://doi.org/10.1016/S0142-9612(02)00276-4

    Article  CAS  PubMed  Google Scholar 

  27. Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27:2907–2915. https://doi.org/10.1016/j.biomaterials.2006.01.017

    Article  CAS  PubMed  Google Scholar 

  28. Peter M, Binulal NS, Nair SV et al (2010) Novel biodegradable chitosan–gelatin/nano-bioactive glass ceramic composite scaffolds for alveolar bone tissue engineering. Chem Eng J 158:353–361. https://doi.org/10.1016/j.cej.2010.02.003

    Article  CAS  Google Scholar 

  29. Isikli C, Hasirci V, Hasirci N (2012) Development of porous chitosan–gelatin/hydroxyapatite composite scaffolds for hard tissue-engineering applications. J Tissue Eng Regen Med 6:135–143. https://doi.org/10.1002/term.406

    Article  CAS  PubMed  Google Scholar 

  30. Yazdanpanah A, Kamalian R, Moztarzadeh F et al (2012) Enhancement of fracture toughness in bioactive glass-based nanocomposites with nanocrystalline forsterite as advanced biomaterials for bone tissue engineering applications. Ceram Int 38:5007–5014. https://doi.org/10.1016/j.ceramint.2012.02.097

    Article  CAS  Google Scholar 

  31. Thein-Han WW, Saikhun J, Pholpramoo C et al (2009) Chitosan–gelatin scaffolds for tissue engineering: physico-chemical properties and biological response of buffalo embryonic stem cells and transfectant of GFP–buffalo embryonic stem cells. Acta Biomater 5:3453–3466. https://doi.org/10.1016/j.actbio.2009.05.012

    Article  CAS  PubMed  Google Scholar 

  32. Cholas R, Kunjalukkal Padmanabhan S, Gervaso F et al (2016) Scaffolds for bone regeneration made of hydroxyapatite microspheres in a collagen matrix. Mater Sci Eng C 63:499–505. https://doi.org/10.1016/j.msec.2016.03.022

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zarrin Ahmadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadi, Z., Moztarzadeh, F. Synthesizing and Characterizing of Gelatin-Chitosan-Bioactive Glass (58s) Scaffolds for Bone Tissue Engineering. Silicon 10, 1393–1402 (2018). https://doi.org/10.1007/s12633-017-9616-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-017-9616-z

Keywords

Navigation