Silicon

pp 1–6 | Cite as

Characteristics of MEH-PPV/Si and MEH-PPV/PS Heterojunctions as NO2 Gas Sensors

  • Nada K. Abbas
  • Isam M. Ibrahim
  • Manal A. Saleh
Original Paper
  • 18 Downloads

Abstract

In this work, novel MEH-PPV/Si and MEH-PPV/PS heterojunction gas sensors were fabricated and characterized. The sensitivity and response time were measured at different operating temperatures (30, 100, 200 °C). The results showed that the maximum sensitivity of the MEH-PPV/Si device to NO2 gas is 16% at room temperature, while the maximum value of 74% was measured at 200 °C. Also, the results showed that the MEH-PPV/PS device has better sensitivity for NO2 gas compared to MEH-PPV/Si.

Keywords

Organic heterojunction MEH-PPV Gas sensor Conductive polymers 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nylabder C, Armgrath M, Lundstrom I (1983) An ammonia detector based on a conducting polymer. In: Proceedings of the International Meeting on Chemical Sensors, Fukuoka, Japan, pp 203–207Google Scholar
  2. 2.
    Dubbe A (2003) Fundamentals of solid state ionic micro gas sensor. Sens Actuators 88:138–148CrossRefGoogle Scholar
  3. 3.
    Timmer B, Olthuis W, van den Berg A (2005) Ammonia sensors and their applications - a review. Sens Actuators B 107:666–677CrossRefGoogle Scholar
  4. 4.
    Gao J, Gao T, Li YY, Sailor MJ (2002) Vapor sensors based on optical interferometry from oxidized microporous silicon films. Langmuir 18:2229–2233CrossRefGoogle Scholar
  5. 5.
    Saidi MA, Rahman WA, Majid R (2014) Effect of different solvents on the thermal, IR spectroscopy and morphological properties of solution casted PLA/starch films, Malaysian. J Fund Appl Sci 10:33–36Google Scholar
  6. 6.
    Seiyama MNT, Kato A, Fukushi K (1996) A new detector for gaseous components using semi conductive thin films. Anal Chem 34:1502–1503CrossRefGoogle Scholar
  7. 7.
    Williams DE (1999) Semiconducting oxides as gas-sensitive resistors. Sens Actuators B 57(1):1–16CrossRefGoogle Scholar
  8. 8.
    Barsan NS, Berberich M, Gpel W (1999) Fundamental and practical aspects in the design of nanoscaled SnO2 gas sensors: a status report, Fresenius. J Anal Chem 365(4):287–304CrossRefGoogle Scholar
  9. 9.
    Patil D, Patil LA, Jain GH, Wagh MS (2006) Surface activated ZnO thick film resistors for LPG gas sensing. Sens Transducers J 74(12):874–883Google Scholar
  10. 10.
    Nayef U (2013) Fabrication and characteristics of porous silicon for photoconversion. Int J Basic Appl Sci 13 (2):61–63Google Scholar
  11. 11.
    Kavasoglu A, Yakuphanogluc F, Kavasoglu N, Pakma O, Birgi O, Oktik S (2010) The analysis of the charge transport mechanism of n-si/MEH-PPV device structure using forward bias I–V–T characteristics. J Alloys Compounds 492:421–426CrossRefGoogle Scholar
  12. 12.
    Ramírez J, Vilanova X, Llobet E. (2010) Drop-coated sensing layer on ultra-low power hotplates for an RFID flexible tag microlab. Sens Actuators B 144:462–466CrossRefGoogle Scholar
  13. 13.
    Tongpool R, Yoriya S (2005) Kinetics of nitrogen dioxide exposure in lead phthalocyanine sensors. Thin Solid Films 477:148–152CrossRefGoogle Scholar
  14. 14.
    Patel AK (2010) Use of electrochemically machined porous silicon to trap protein molecule. J Appl Sci Eng Technol 2(3):208–215Google Scholar
  15. 15.
    Šalucha K, Marcinkevičius AJ (2007) Investigation of porous silicon layers as assivation coatings for high voltage silicon device. Electron Electr Eng 79:41–44Google Scholar
  16. 16.
    Doğan Ş, Akn N, Başköse C, Asar T, Memmedli T, Özçelik S (2013) Porous silicon: Volume-specific surface area determination from AFM measurement data. J Mater Sci Eng B 3(8):518–523Google Scholar
  17. 17.
    Saha H, Das J, Hossain SM (2003) Gas sensitive porous silicon devices: responses to organic vapors. Asian J Phys 93(1):384–390Google Scholar
  18. 18.
    Wang L, Zhang L, Xiang D, Gao R (2010) Metal oxide gas sensors: Sensitivity and influencing factors. Sensors 10(3):2088–2106CrossRefGoogle Scholar
  19. 19.
    Albert K, Lewis N, Schauer C, Sotzing G, Stitzel S, Vaid T, Walt D (2000) Crossreactive chemical sensor arrays. Chem Rev 100(7):2595–2626CrossRefGoogle Scholar
  20. 20.
    Arshak K, Moore E, Lyons G, Harris F, Clifford S (2004) Gas sensors employed in electronic nose applications. Sensor Rev 24(2):181–198CrossRefGoogle Scholar
  21. 21.
    Urbánek P, Kuřitka I, Daniš S, Toušková J, Toušek J (2014) Thickness threshold of structural ordering in thin MEH-PPV films. Polymer 55(16):4050–4056CrossRefGoogle Scholar
  22. 22.
    Guadarrama A, Fernandez J, Iniguez M, Souto J, Saja J (2000) Array of conducting polymer sensors for the characterization of wines. Anal Chem Acta 411(2):193–200CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2018

Authors and Affiliations

  • Nada K. Abbas
    • 1
  • Isam M. Ibrahim
    • 2
  • Manal A. Saleh
    • 1
  1. 1.Department of Physics, College of Science for WomenUniversity of BaghdadBaghdadIraq
  2. 2.Department of Physics, College of ScienceUniversity of BaghdadBaghdadIraq

Personalised recommendations