Skip to main content
Log in

Effect of Gamma Irradiation on Structural and Optical Investigations of Borosilicate Glass Doped Yttrium Oxide

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The structural, physical, and optical properties of prepared glass samples of the composition formula 30SiO2-(40-x)B2O3-20Na2O-10Al2O3-xY2O3, where x = 0, 1, 5, 7 (wt%) were studied before and after gamma irradiation using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and UV-visible spectroscopy. The optical absorption spectra of study glasses were recorded in the UV/visible range of 200–900 nm. The optical band gap energies were calculated from absorption data. These results show that Eopt decreases with increasing concentration of Y2O3. The changes occurring in the optical parameters obtained from absorption spectra before and after irradiation have been referred to irradiation induced structural defects and compositional changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gaboriaud RJ, Pailloux F, Guerin P, Paumier F (2000) Yttrium oxide thin films, Y2O3, grown by ion beam sputtering on Si. J Pys D: Appl Phys 33:2000

    Google Scholar 

  2. Kasikov A (2008) Optical inhomogeneity model for evaporated Y2O3 obtained from physical thickness measurement. Appl Surf Sci 254:3677

    Article  CAS  Google Scholar 

  3. Van TT, Chang JP (2005) Controlled erbium incorporation and photoluminescence of Er- doped Y2O3. Appl Phys Letts 87:011907

    Article  Google Scholar 

  4. Singh K, Gupta N, Pandey OP (2007) Effect of Y2O3 on the crystallization behavior of SiO2–MgO–B2O3–Al2O3 glasses. Mater Sci 42:6426–6432

    Article  CAS  Google Scholar 

  5. Doremus HR (1994) Glass science, 2nd edn. NY, Wiley

    Google Scholar 

  6. El-Alaily NA (2003) Mohamed RM.Effect of irradiation on some optical properties and density of lithium borate glass. Mater Sci Eng B 98:193–203

    Article  Google Scholar 

  7. Youngman RE, Zwanziger J (1994) W.Multiple boron sites in borate glass detected withdynamic angle spinning nuclear magnetic resonance. Non-Cryst Solids 168:293–297

    Article  CAS  Google Scholar 

  8. Moustafa FA, Abdel-Baki M, Fayad AM, El-Diasty F (2014) Role of Mixed Valence Effect and Orbital Hybridization on Molar Volume of Heavy Metal Glass for Ionic Conduction Pathways Augmentation American. J Mater Sci 4(3):119–126

    Google Scholar 

  9. Singh S, Kalia G, Singh K (2015) Effect of intermediate oxide (Y2O3) on thermal, structural and optical properties of lithium borosilicate glasses. Mol Struct 1086:239–245

    Article  CAS  Google Scholar 

  10. Friebele EJ (1991) In: Uhlmann DR, Kreidl NJ (eds) Optical Properties of Glasses. The American Ceramic Society, Inc., Westerville, OH, p 205

  11. Shkrob A, Tadjikov BM, Trifunac AD (2000) Magnetic resonance studies on radiation-induced point defects in mixed oxide glasses. II. spin centers in alkali silicate glasses. J Non-Cryst Solids 262:35–65

    Article  CAS  Google Scholar 

  12. Kaur R, Singh S, Pandey OP (2013) Gamma ray irradiation effects on the optical properties of BaO–Na2O–B2O3–SiO2 glasses. J Mol Struct 1048(0):78–82

    Article  CAS  Google Scholar 

  13. Mi-tang W, Jin-shu C, Mei L, Feng H (2011) Structure and properties of soda lime silicate glass doped with rare earth. Phys B 406:187

    Article  Google Scholar 

  14. Kumar V, Pandey OP, Singh K (2010) Effect of A2O3 (A = La, Y, Cr, Al) on thermal and crystallization kinetics of borosilicate glass sealants for solid oxide fuel cells Glasses. Ceram Int 36: 1621

    Article  CAS  Google Scholar 

  15. Kamitsos EI (2003) Infrared studies of borate glasses. Phys Chem Glasses 44(2):79

    CAS  Google Scholar 

  16. Saddeek YBK, Aly AGH, Afify N, Shaaban KHS, Dahshan A (2016) Optical and structural evaluation of bismuth alumina-borate glasses doped with different amounts of (Y2O3). J Non-Cryst Solids 454:13–18

    Article  CAS  Google Scholar 

  17. Yusub S, Narendrudu T, Suresh S, Krishna Rao S (2014) J Mol Struct 1076:136–146

    Article  CAS  Google Scholar 

  18. Shah SA, Hashmi MU, Shamim A, Alam S (2010) Study of an anisotropic Ferromagnetic bioactive glass ceramic for cancer treatment. Appl Phys A 100:273

    Article  CAS  Google Scholar 

  19. Rajysree C, Rao DK (2011) Spectroscopic investigations on alkali earth bismuth borate glasses doped with CuO. J Non-Cryst Solids 357:836–841

    Article  Google Scholar 

  20. Berthereau A, Le Luyer Y, Olazcuaga R, Flem GL, Couzi M, Canioni, L, Segonds P, Sarger L, Ducasse A (1994) Mater Res Bull 29:933

    Article  CAS  Google Scholar 

  21. Motka SG, Yawale SP, Yawale SS (2002) Infrared spectra of zinc doped leadborate glasses. Bull Mater Sci 25:75

    Article  Google Scholar 

  22. Kamitsos EI, Patsis AP, Karakassides MA, Chryssikos GD (1990) Infraredreflectance spectra of lithium borate glasses. J Non-CrystSolids 126:52

    Article  CAS  Google Scholar 

  23. Saddeek YB, Shaaban ER, Moustafa ElS, Moustafa HM (2008) Spectroscopic properties, electronic polarizability, and optical basicity of Bi2O3–Li2O–B2O3 glasses. Phys B 403:2399– 2407

    Article  CAS  Google Scholar 

  24. Yusub S, Baskaran SG, Krishna SBM, RajyasreeCh, Babu AR, Rao DK (2011) Spectroscopic properties and dielectric dispersion of K2O-BaO-B2O3 glasses doped with Fe2O3. Ind J Pure Appl Phys 49:315

    CAS  Google Scholar 

  25. Zheng W-h, Cheng J-S, Quan J, Lou X-C, Liu J (2006) Crystallization and properties of some CaO-A12O3-SiO2 system glass-ceramics with Y2O3 addition. Trans Nonferr Met Soci China 16(1):s105–s108

    Article  Google Scholar 

  26. Liu Y, Huang J, Wang X, Yang Q, Wang Y, Rao P, Wang Q (2011) Research on the high strength glass ceramics/mullite ceramics composites. J Glass Ceram 1:53–57

    Article  CAS  Google Scholar 

  27. Piao F, Oldham WG, Haller EE (2000) J Non-Cryst Solids 276: 61

    Article  CAS  Google Scholar 

  28. Kaur R, Singh S, Pandey OP (2012) FTIR structural investigation of gamma irradiated BaO–Na2O–B2O3–SiO2 glasses. Phys B Condens Matter 407(24):4765–4769

    Article  CAS  Google Scholar 

  29. El-Batal HA, Khalifa FA, Azooz MA (2001) Gamma ray interaction, crystallization and infrared absorption spectra of some glasses and glass-ceramic from the system Li2O -B2O3- Al2O3. Ind J Pure Appl Phys 39:565

    CAS  Google Scholar 

  30. Primak W (1972) Mechanism for the radiation compaction of vitreous silica. J Appl Phys 43:1972

    Google Scholar 

  31. Moncke D, Ehrt D (2004) Irradiation induced defects in glasses resulting in the photoionization of polyvalent dopants. Opt Mater 25:425

    Article  CAS  Google Scholar 

  32. Natura U (1999) EhrtD.Formation of radiation defects in silicate and borosilicate glasses caused by UV lamp and excimer laser irradiation. Glastech Ber Glass Sci Technol 72: 295

    CAS  Google Scholar 

  33. ElBatal FH, Marzouk SY, Azooz MA (2006) Physical Chemistry Glasses: Eur. γ-ray interaction with bioglassescontaining transition metal ions. J. Glass Sci.Technol. B 47(5): 588

    CAS  Google Scholar 

  34. Kaur GR, Kumar M, Arora A, Pandey OP, Singh K (2011) Influence of Y2O3 on structural and optical properties of SiO2–BaO–ZnO–xB2O3–(10 −x) Y2O3 glasses and glass ceramics. J Non-Cryst Solids 357:858– 863

    Article  CAS  Google Scholar 

  35. Baccaro S, Monika G, Sharma KS, Thind DP (2008) Singh. Variation of optical band gap with radiation dose in PbO–B2O3 glasses. Nuclear Inst Methods Phys Res B 266:594–598

    Article  CAS  Google Scholar 

  36. Rupesh Kumar A, Rao TGVM, Neeraja K, Rami Reddy M, Veeraiah N (2013) Gamma ray induced changes on vibrational spectroscopic properties of strontium alumino-borosilicate glasses. Vib Spectrosc 69:49– 56

    Article  CAS  Google Scholar 

  37. ElBatal FH, Selim MS, Marzouk SY, Azooz MA (2007) UV-vis absorption of the transition metal-doped SiO2–B2O3–Na2O glasses. Phys B 398:126–134

    Article  CAS  Google Scholar 

  38. Kaur R, Singh S, Pandey OP (2013) Gamma ray irradiation effects on the optical properties of BaO–Na2O–B2O3–SiO2 glasses. J Mol Struct 1048:78– 82

    Article  CAS  Google Scholar 

  39. Mott N, Davis E (1979) Electronic process in non-crystalline materials, 2nd edn. Clarendon Press, Oxford, p 289

    Google Scholar 

  40. Duffy JA, Ingram MD (1976) An interpretation of glass chemistry in terms of the optical basicity concept. J Non-Cryst Solids 21: 373

    Article  CAS  Google Scholar 

  41. Saddeek YB, Aly KA, Bashier SA (2010) Optical study of lead borosilicate glasses. Phys B 405:2407–2412

    Article  CAS  Google Scholar 

  42. Feller S, Dell WJ, Bray PJ (1982) 10B NMR studies of lithium borate glasses. J Non-Cryst Solids 51:21

    Article  CAS  Google Scholar 

  43. Rao TGVM, Rupesh Kumar A, Neeraja K, Veeraiah N, Rami Reddy M (2013) Optical and structural investigation of Eu3+ ions in Nd3+ co-doped magnesium lead borosilicate glasses. J Alloys Compd 557:209–217

    Article  CAS  Google Scholar 

  44. Marshall CD, Speth JA, Payne SA (1997) Induced optical absorption in gamma, neutron nd ultraviolet irradiated fused quartz and silica. J Non-Cryst Solids 212:59–73

    Article  CAS  Google Scholar 

  45. Marzouk SY, Elalaily NA, Ezz-Eldin FM, Abd-Allah WM (2006) Optical absorption of gamma-irradiated lithium-borate glasses doped with different transition metal oxides. Phys B: Condens Matter 382:340–351

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. M. Abd-Allah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fayad, A.M., Abd-Allah, W.M. & Moustafa, F.A. Effect of Gamma Irradiation on Structural and Optical Investigations of Borosilicate Glass Doped Yttrium Oxide. Silicon 10, 799–809 (2018). https://doi.org/10.1007/s12633-016-9533-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-016-9533-6

Keywords

Navigation