Skip to main content
Log in

Efficient PL Emission from p-type Porous Silicon: A Comparative Study for Selection of Effective Anodization Parameters

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The physical mechanism of highly efficient photoluminescence (PL) emission from p-type silicon is described by a comparative study of the effectiveness of the etching parameters in an electrochemical anodization technique. Two series of porous silicon samples were prepared in a combination of anodization current and time, to maintain the total amount of anodic charge transfer constant. Photoluminescence studies show that irrespective of the amount of charge transfer, the samples prepared with comparatively higher current density show an efficient PL as well as stronger blueshift in the emission energy vis-à-vis the samples prepared for longer durations. An overall decrease in crystallite size, as estimated by Raman spectral analysis, was observed for both series of samples with the progress of charge transfer. Comparative analysis shows a marginal difference in crystallite size for both series of samples in the initial state of charge transfer, whereas major differences arise at higher values. This is explained with the formation of silicon suboxide on the porous surface at higher current density, leading to initiation of side wall reaction, and higher reduction rate in crystallite size as well as strong luminescence due to the carrier quantum confinement effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Canham LT (1990). Appl Phys Lett 57:1046–1048

    Article  CAS  Google Scholar 

  2. Lehman V (2002) Electrochemistry of Silicon. Wiley VCH, New York, p 277

    Book  Google Scholar 

  3. Foll H, Christophersen M, Carstensen J, Hasse G (2002). Mater Sci Eng R 39:93–141

    Article  Google Scholar 

  4. Astrova EV, Borovinskaya TN, Tkachenko AV, Balakrishnan S, Perova TS, Afferty A, Gun’ko YK (2004). J of Micromechanics and Microengg 14:1022–1028

    Article  CAS  Google Scholar 

  5. Turton R (2000) The Physics of Solids. Oxford University Press, New York

    Google Scholar 

  6. Gelloz B, Kojima A, Koshida N (2005). Appl Phys Lett 87:031107. (3 pages)

    Article  Google Scholar 

  7. Váaquez-A MA, Águila Rodríguez G, García-Salgado G, Romero-Paredes G, Peňa-Sierra R (2007). Revista Mexicana De Física 53:431–435

    Google Scholar 

  8. Benyahia B, Gabouze N, Haddadi M, Guerbous L, Beldjilali K (2008). Thin Solid Films 516:8707–8711

    Article  CAS  Google Scholar 

  9. Sharma SN, Banerjee R, Das D, Chattopadhyay S, Barua AK (2001). Appl Surf Sci 182:333–337

    Article  CAS  Google Scholar 

  10. Ziong ZH, Liao LS, Yuan S, Yang ZR, Ding XM, Hou XY (2001). Thin Solid Films 388:271–276

    Article  Google Scholar 

  11. Zhang YH, Li XJ, Zheng L, Chen QW (1998). Phys Rev Lett 81:1710–1713

    Article  CAS  Google Scholar 

  12. Naddaf M, Hamadeh H (2009). Mater Sci Eng C 29:2092–2098

    Article  CAS  Google Scholar 

  13. Zhao Y, Yang D, Li D, Jiang M (2005). Mater Sci Eng B 116:95–98

    Article  Google Scholar 

  14. Fujiwara M, Matsumoto T, Kobayashi H, Tanaka K, Happo N, Horii K (2005). J Lumin 113:243–248

    Article  CAS  Google Scholar 

  15. Kolasinski KW, et al. (2000). J Appl Phys 88:2472–79

    Article  CAS  Google Scholar 

  16. Guha S, Steiner P, Lang W (1996). J Appl Phys 79:8664–68

    Article  CAS  Google Scholar 

  17. Islam MN, Kumar S (2001). Appl Phys Lett 78:715–17

    Article  CAS  Google Scholar 

  18. Kanemitsu Y, Uto H, Masumoto Y, Matsumoto T, Futagi T, Mimura H (1993). Phys Rev B 48:2827

    Article  CAS  Google Scholar 

  19. Richter H, Wang ZP, Ley L (1986). Solid State Commun 39:625–629

    Article  Google Scholar 

  20. Campbell IH, Fauchet PM (1986). Solid State Commun 58:739–741

    Article  CAS  Google Scholar 

  21. Bisi O, Ossicini S, Pavesi L (2000). Surf Sci Rep 38:1–126

    Article  CAS  Google Scholar 

  22. Smith RL, Collins SD (1929). J Appl Phys 71:R1–R22

    Article  Google Scholar 

  23. Peter LM, Riley DJ, Wielgosz R (1995). Appl Phys Lett 66:2355–2357

    Article  CAS  Google Scholar 

  24. Lévy-Clément C, Lagoubi A, Tomkievicz M (1994). J Electrochem Soc 141:958–967

    Article  Google Scholar 

  25. Lehmann V, Föll H (1990). J Electrochem Soc 137:653–659

    Article  CAS  Google Scholar 

  26. Koyama H (2006). J Appl Electrochem 36:999–1003

    Article  CAS  Google Scholar 

  27. Bertolotti M, Carassiti F, Fazio E, Ferrari A, La Monica S, Lazarouk S, Liakhou G, Maiello G, Proverbio E, Schirone L (1995). Thin Solid Films 255:152–154

    Article  CAS  Google Scholar 

  28. Propst EK, Rieger MM, Vogt KW, Kohl PA (1994). Appl Phys Lett 64:1914–1916

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author 1 gratefully acknowledges the financial support provided by Department of Science & Technology, Govt. of India, through its INSPIRE Grant No. IFA-12 ENG-13.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saakshi Dhanekar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhanekar, S., Islam, S.S. Efficient PL Emission from p-type Porous Silicon: A Comparative Study for Selection of Effective Anodization Parameters. Silicon 10, 725–730 (2018). https://doi.org/10.1007/s12633-016-9522-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-016-9522-9

Keywords

Navigation