Skip to main content

Advertisement

Log in

Phytolith Carbon Sequestration in Shrublands of North China

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Global warming mainly due to emissions of carbon dioxide (CO 2) and other greenhouse gases has initiated wide interest in the investigation of various land CO 2 sequestration mechanisms. As a long-term terrestrial carbon sequestration mechanism, phytolith carbon sequestration may play an important role in the global carbon cycle and climate change. This study investigated the distribution of phytoliths and phytolith-occluded carbon (PhytOC) in shrublands of North China to understand the potential of phytolith carbon sequestration within shrublands. The results indicated positive correlations between PhytOC content of biomass and phytolith content of biomass in the shrub layer, and between PhytOC content of biomass and carbon content of phytoliths in the herb layer of shrublands. The PhytOC production fluxes of five shrublands through shrub leaves and herb layers were 4.12–7.94 kg CO 2 ha−1 a−1 with an average of 5.95 kg CO 2 ha−1 a−1, and decreased in the following order: Ostryopsis davidiana-shrubland >Spiraea salicifolia-shrubland ≈Armeniaca sibirica-shrubland > Ziziphus jujuba-shrubland >Vitex negundo-shrubland. The mean rate of PhytOC production in temperate shrubland of North China was 0.45 ± 0.09 Tg CO 2 a−1. The data indicate that phytolith carbon sequestration in shrublands is a significant mechanism to mediate the increase of atmospheric CO 2. The potential of phytolith carbon sequestration in China’s shrublands may be further enhanced by adaptive management of shrublands, such as conservation of plant species with high PhytOC production flux.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. IPCC (2014) Intergovernmental Panel on Climate Change

  2. Mitchell J, Johns T, Gregory J, Tett S (1995). Nature 376:5001–5504

    Article  Google Scholar 

  3. Falkowski P, Scholes R J, Boyle E, Canadell J, Canfield D, Elser J, Gruber N, Hibbard K, Högberg P, Linder S (2000). Science 290:291–296

    Article  CAS  Google Scholar 

  4. Van der Werf G R, Morton D C, DeFries R S, Olivier J G, Kasibhatla P S, Jackson R B, Collatz G J, Randerson J T (2009). Nat Geosci 2:737–738

    Article  CAS  Google Scholar 

  5. Kosten S, Roland F, Da Motta Marques DM, Van Nes EH, Mazzeo N, Sternberg LDS, Scheffer M, Cole JJ (2010). Glob Biogeochem Cycles 24:GB2007

    Article  Google Scholar 

  6. Lackner K S (2003). Science 300:1677

    Article  CAS  Google Scholar 

  7. Parr J F, Sullivan L A, Chen B, Ye G, Zheng W (2010). Glob Chang Biol 16:2661–2667

    Article  Google Scholar 

  8. Pan Y, Birdsey R A, Fang J Y, Houghton R, Kauppi P E, Kurz W A, Phillips O L, Shvidenko A, Lewis S L, Canadell J G (2011). Science 333:988–993

    Article  CAS  Google Scholar 

  9. Song Z L, Liu H Y, Si Y, Yin Y (2012a). Glob Chang Biol 18:3647–3653

  10. Song Z L, Wang H L, Strong P J, Li Z M, Jiang P K (2012b). Earth Sci Rev 115:319–331

  11. Li B L, Song Z L, Wang H L, Guo F S, Gui R Y, Yang X M, Song R S (2014). Chin Sci Bull 59:4816–4822

    Article  CAS  Google Scholar 

  12. Lu H Y, Jia J W, Wang W M, Wang Y J, Liu K B (2002). Acta Micropalaeontologica Sinica 19:389–396. (in Chinese)

    Google Scholar 

  13. Prychid C J, Rudall P J, Gregory M (2003). Bot Rev 69:377– 440

    Article  Google Scholar 

  14. Parr J F, Sullivan L A (2005). Soil Biol Biochem 37:117–124

    Article  CAS  Google Scholar 

  15. Parr J F, Sullivan L A, Quirk R (2009). Sugar Tech 11:17–21

    Article  CAS  Google Scholar 

  16. Parr J F, Sullivan L A (2011). Plant Soil 342:165–171

    Article  CAS  Google Scholar 

  17. Zuo X X, Lü H Y (2011). Chin Sci Bull 56:3451–3456

    Article  CAS  Google Scholar 

  18. Song Z L, Liu H Y, Li B L, Yang X M (2013). Glob Chang Biol 19:2907–2915

    Article  Google Scholar 

  19. Song Z L, Wang H L, Strong P J, Guo F S (2014). Eur J Agron 53:10–15

    Article  CAS  Google Scholar 

  20. Strömberg C A E (2004). Palaeogeogr Palaeoclimatol Palaeoecol 207(3):239–275

    Article  Google Scholar 

  21. Prasad V, Strömberg C A E, Alimohammadian H, Sahni A (2005). Science 310:1177–1180

    Article  CAS  Google Scholar 

  22. Hu H F, Wang Z H, Liu G H, Fu B J (2006). Chinese J Plant Ecol 30:539–544. (in Chinese)

    Article  CAS  Google Scholar 

  23. Woodwell GM, Whittaker RH, Reiners WA, Likens GE, Delwiche CC, Botkin DB (1978). Science:141–146

  24. Piao S L, Fang J Y, Ciais P, Peylin P, Huang Y, Sitch S, Wang T (2009). Nature 458:1009–1013

    Article  CAS  Google Scholar 

  25. Li Z M, Song Z L, Jiang P K (2013a). China. Chin Sci Bull 58:2480–2487

  26. Parr J F, Dolic V, Lancaster G, Boyd W E (2001). Rev Palaeobot Palynol 116:203–212

    Article  Google Scholar 

  27. Walkley A, Black I A (1934). Soil Sci 37:29–38

    Article  CAS  Google Scholar 

  28. Li Z M, Song Z L, Parr J F, Wang H L (2013b). Plant Soil 370:615–623

  29. Lu R K (2000). China Agricultural Science and Technology Press, Beijing, pp 85–96. (in Chinese)

  30. Guo F S, Song Z L, Sullivan L A, Wang H L, Liu X Y, Wang X D, Zhao Y Y (2015). Sci Bull 60:591–597

    Article  CAS  Google Scholar 

  31. Bi R C, Wang G S, Su S C (1993). Journal of Shanxi Normal University 2:142–145. (in Chinese)

    Google Scholar 

  32. Chen X, Qin M A, Kang F, Cao W, Zhang G, Chen Z (2002). For Res 15:304–309. (in Chinese)

    Google Scholar 

  33. Dai X B (1989). Acta Botanica Sinica 31(4):307–315. (in Chinese)

    Google Scholar 

  34. Zhong Z B, Yang L C, Liu H C, Song W Z, Li F, Zhou G Y (2014). Mountain Research 32:678–684. (in Chinese)

    Google Scholar 

  35. Fang J Y, Guo Z D, Piao S L, Chen A P (2007). Sci China Ser D Earth Sci 50:1341–1350

    Article  CAS  Google Scholar 

  36. Ma J F, Tamai K, Ichii M, Wu G F (2002). Plant Physiol 130:2111–2117

    Article  CAS  Google Scholar 

  37. Korndörfer G H, Lepsch I (2001). Studies in Plant Science 8:133–147

    Article  Google Scholar 

  38. Ding T, Ma G, Shui M, Wan D, Li R (2005). Chem Geol 218:41–50

    Article  CAS  Google Scholar 

  39. Bartoli F (1985). J Soil Sci 36:335–350

    Article  CAS  Google Scholar 

  40. Bartoli F, Wilding L P (1980). Soil Sci Soc Am J 44:873–878

    Article  CAS  Google Scholar 

  41. Wilding L, Brown R E, Holowaychuk N (1967). Soil Sci 103:56–61

    Article  CAS  Google Scholar 

  42. Meunier J D, Colin F, Alarcon C (1999). Geology 27:835–838

    Article  CAS  Google Scholar 

  43. Mulholland S C, Prior C (1992). Phytolitharien Newsletter 7:7–9

    Google Scholar 

  44. Wu B F, Yuan Q Z, Yan C Z, Wang Z M, Yu X F, Li A N, Ma R H, Huang J L, Chen J S (2014). Quaternary Sciences 34:723–731. (in Chinese)

    Google Scholar 

  45. Qu WL, Yang XP, Zhang CT, Wei B (2015). Acta Prataculturae Sinica:201–207. (In Chinese)

  46. Stock WD, Lewis OAM (1986). J Ecol:317–328

  47. Peng H Y, Li X Y, Tong S Y (2014). Acta Prataculturae Sinica 23(2):313–322

    Google Scholar 

  48. Reynolds J F, Smith D M S, Lambin E F, Turner B L, Mortimore M, Batterbury S P J, Downing T E, Dowlatabadi H, Fernández R J, Herrick J E (2007). Science 316:847–85

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhaoliang Song or Hongyan Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ru, N., Song, Z., Liu, H. et al. Phytolith Carbon Sequestration in Shrublands of North China. Silicon 10, 455–464 (2018). https://doi.org/10.1007/s12633-016-9473-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-016-9473-1

Keywords

Navigation