Skip to main content
Log in

Comparative study of a Surface Plasmon Resonance Biosensor based on Metamaterial and Graphene

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In this study, a surface plasmon resonance biosensor at near infrared frequency based on a metamaterial is proposed. The proposed biosensor utilizes the properties of plasmons and metamaterial for enhancement of its performance parameters i.e. sensitivity, detection accuracy and quality factor. The thickness of the metamaterial and gold film has been optimized for optimal performance of the proposed biosensor at near infrared wavelengths. Results obtained from the proposed biosensor were compared with existing two-dimensional nanomaterials such as a graphene based biosensor and a conventional surface plasmon resonance biosensor. Finally, it is observed that the performance parameters of the proposed biosensor are very high when compared to existing surface plasmon resonance biosensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Homola J (1997) On the sensitivity of surface plasmon resonance sensors with spectral interrogation. Sens Actuator B-Chem 41:207–211

    Article  CAS  Google Scholar 

  2. Kretschmann E, Raether H (1968) Radiative decay of non-radiative surface plasmons excited by light. Z Naturforsch 23A:2135–2136

    Google Scholar 

  3. Homola J (2003) Present and future of surface Plasmon resonance biosensors. Anal Bioanal Chem 377(3):528–39

    Article  CAS  Google Scholar 

  4. Liedberg B, Nylander C, Lunström I (1983) Surface plasmon resonance for gas detection and biosensing. Sens Actuator B-Chem 4:299–304

    Article  CAS  Google Scholar 

  5. Sharma AK, Jha R, Gupta BD (2007) Fiber-optic sensors based on surface plasmon resonance: a comprehensive review. IEEE Sens J 7(8):1118–1128

    Article  Google Scholar 

  6. Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108:462–493

    Article  Google Scholar 

  7. Wong CL, Olivo M (2014) Surface plasmon resonance imaging sensors: a review. Plasmonics 9:809–824

    Article  CAS  Google Scholar 

  8. Hutter E, Fendler JH (2004) Exploitation of localized surface plasmon resonance. Adv. Mater 16(19):1685–1706

    Article  CAS  Google Scholar 

  9. Wu L, Chu HS, Koh WS, Li EP (2010) Highly sensitive graphene biosensors based on surface plasmon resonance. Opt Express 18(14):14395–14400

    Article  CAS  Google Scholar 

  10. Stewart ME, Anderton CR, Thompson LB, Maria J, Gray SK, Rogers JA, Nuzzo RG (2008) Nanostructured plasmonic sensors. Chem Rev 108(2):494–521

    Article  CAS  Google Scholar 

  11. Lee KL, Lee CW, Wang WS, Wei PK (2007) Sensitive biosensor array using surface plasmon resonance on metallic nanoslits. J Biomed Opt 12(4):044023

    Article  Google Scholar 

  12. Maurya JB, Prajapati YK, Vivek S, Saini JP (2015) Sensitivity enhancement of surface plasmon resonance sensor based on graphene-MoS2 hybrid structure with TiO2-SiO2 composite layer. Appl Phys A 121(2):525–533

    Article  CAS  Google Scholar 

  13. Maurya JB, Prajapati YK, Vivek S, Saini JP, Rajeev T (2015) Performance of graphene-MoS2 based surface plasmon resonance sensor using silicon layer. Opt Quantum Electron 47(11):3599–3611

    Article  CAS  Google Scholar 

  14. Kim JA, Hwang T, Dugasani SR, Amin R, Kulkarni R, Park SH, Kim T (2013) Graphene based fiber optic surface Plasmon resonance for bio-chemical sensor applications. Sens Actuator B-Chem 187:426–433

    Article  CAS  Google Scholar 

  15. Liu Y, Dong X, Chen P (2012) Biological and chemical sensors based on graphene materials. Chem Soc Rev 41:2283–2307

    Article  CAS  Google Scholar 

  16. Kim M, Jeong CY, Heo H, Kim S (2015) Optical reflection modulation using surface plasmon resonance in a graphene-embedded hybrid plasmonic waveguide at an optical communication wavelength. Opt Lett 40(6):871–874

    Article  CAS  Google Scholar 

  17. Alka V, Arun P, Rajeev T (2015) Sensitivity enhancement of surface plasmon resonance biosensor using graphene and air gap. Opt Commun l 357:106–112

    Article  Google Scholar 

  18. Veselago V (1968) The electrodynamics of substance with simultaneously negative values of μ and. Sov Phys Usp 10:509–514

    Article  Google Scholar 

  19. Qing DK, Chen G (2004) Enhancement of evanescent wave in a waveguide using metamaterials of negative Permittivity and permeability. Appl Phys Lett 84:669–671

    Article  CAS  Google Scholar 

  20. Chen T, Li S, Sun H (2012) Metamaterials Application in Sensing. Sensors 12:2742–2765

    Article  Google Scholar 

  21. Anurag U, Prajapati YK, Vivek S, Saini JP (2015) Sensitivity estimation of metamaterial loaded planar waveguide. Opt Quantum Electron 47(7):2277–2287

    Article  Google Scholar 

  22. Upadhyay A (2015) Comprehensive study of reverse index waveguide based sensor with metamaterial core. Opt Commun 348:71–76

    Article  CAS  Google Scholar 

  23. Upadhyay A, Prajapati YK, Tripathi R, Singh V, Saini JP (2015) Metal clad waveguide sensor with metamaterial layer for refractometric sensing application. J Nanoelectron Optoelectron 10:749–754

    Article  CAS  Google Scholar 

  24. Prajapati Y, Yadav A, Singh V, Saini JP (2013) Effect of Metamaterial layer on optical surface plasmon resonance Sensor. Optik Int J Light Electron Opt 124(18):3607–3610

    Article  CAS  Google Scholar 

  25. Fang J, Levchenko I, Yan W, Aharonovich I, Aramesh M, Prawer S, Ostrikov KK (2015) Plasmonic metamaterial sensor with ultra-high sensitivity in the visible spectral range. Adv Opt Mater 3(6):750–755

    Article  CAS  Google Scholar 

  26. Kullab HM, Taya SA, El-Agez TM (2012) Metal clad waveguide sensor using a left handed material as a core layer. J Opt Soc Am B 29(5):959–964

    Article  CAS  Google Scholar 

  27. Jaksic Z (2010) Optical metamaterials as the platform for a novel generation of ultrasensitive chemical or biological sensors in Metamaterials: Classes, Properties and Applications: 1-45 E. J. Tremblay, Ed., Nova Science Publishers, Hauppauge, New York

  28. Cai W, Shalaev VM (2010) Optical Metamaterials: Fundamentals and Applications New York: Springer Science plus Business Media, LLC

  29. Park K, Lee B, Fu C, Zhang Z (2005) Study of the surface and bulk polaritons with a negative index metamaterial. J Opt Soc Am B 22:1016–1023

    Article  CAS  Google Scholar 

  30. Nelson BP, Frutos AG, Brockman JM, Corn RM (1999) Near infrared surface Plasmon resonance measurements of ultrathin films. Angle shift and SPR imaging experiments. Anal Chem 71:3928–3934

    Article  CAS  Google Scholar 

  31. McGaughey GB, Gagné M, Rappé AK (1998) Stacking interactions. Alive and well in proteins. J Biol Chem 273(25):15458–15463

    Article  CAS  Google Scholar 

  32. Pockrand I (1978) Surface plasma oscillations at silver surfaces with thin transparent and absorbing coatings. Surf Sci 72:577–588

    Article  CAS  Google Scholar 

  33. Xu X, Peng B, Li D, Zhang J, Wong LM, Zhang Q, Wang S, Xiong Q (2011) Flexible visible–infrared metamaterials and their applications in highly sensitive chemical and biological sensing. Nano Lett 11(8):3232–3238

    Article  CAS  Google Scholar 

  34. Bergmair I, Dastmalchi B, Mergmair M, Saeed A, Hilber W, Hesser G, Helgert C, Pshenay-Severin E, Pertsch T, Kley EB, Hubner U, Shen NH, Penciu R, Kafesaki M, Soukoulis CM, Hingerl K, Muehlberger M, Schoeftner R (2011) Single and multilayer metamaterials fabricated by nanoimprint lithography. Nanotechnology 22:325301

    Article  CAS  Google Scholar 

  35. Boltasseva A, Shalaev VM (2008) Fabrication of optical negative-index metamaterials: Recent advances and outlook. Metamaterials 2(1):1–17

    Article  Google Scholar 

  36. Soukoulis CM, Wegener M (2011) Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nat Photon 5(9):523–530

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alka Verma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, A., Prakash, A. & Tripathi, R. Comparative study of a Surface Plasmon Resonance Biosensor based on Metamaterial and Graphene. Silicon 9, 309–320 (2017). https://doi.org/10.1007/s12633-016-9455-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-016-9455-3

Keywords

Navigation