Skip to main content
Log in

Effects of Annealing Temperatures on the Structural and Dielectric Properties of ZnO Nanoparticles

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

ZnO nanoparticles with hexagonal wurtzite structure were synthesized by using microwave irradiation. The effects of annealing temperatures on the structural, surface morphology and dielectric properties of annealed ZnO nanoparticles were investigated by XRD, FTIR spectra, and dielectric measurements. The XRD reveals the presence of hexagonal wurtzite structure of ZnO average grain size 25.7–36.4 nm. The spectra obtained from FTIR containing two intense absorption bands are attributed to bending and stretching vibrations absorption of Zn–O bond for all annealed ZnO nanoparticles. Dielectric properties of annealed ZnO nanoparticles at different temperatures were studied with respect to frequency. The dielectric measurements reveal that the dielectric response of ZnO nanoparticles is significantly enhanced, especially in the low-frequency range. In conclusion, both the rotation direction polarization and space charge polarization due to a large amount of oxygen vacancies and nano-size effects are responsible for the enhancement of the dielectric properties of ZnO nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xu S, Wang ZL (2011) One-dimensional ZnO nanostructures: solution growth and functional properties. Nano Res 4(11):1013–1098

    Article  CAS  Google Scholar 

  2. Govender K, Boyle DS, O’Brien P, Binks D, West D, Coleman D (2002) Roomtemperature lasing observed from ZnO nanocolumns grown by aqueous solution deposition. Adv Mater 14:1221–1224

    Article  CAS  Google Scholar 

  3. Park WI, Yi GC (2004) Electroluminescence in n-ZnO nanorod arrays vertically grown on p-GaN. Adv Mater 16:87–90

    Article  CAS  Google Scholar 

  4. Mao DS, Wang X, Li W, Liu XH, Li Q, Xu JF (2002) Electron field emission from hydrogen-free amorphous carbon-coated ZnO tip array. J Vac Sci Technol B 20:278–281

    Article  CAS  Google Scholar 

  5. Wang WZ, Zeng BQ, Yang J, Poudel B, Huang JY, Naughton MJ, Ren ZF (2006) Aligned ultralong ZnO nanobelts and their enhanced field emission. Adv Mater 18:3275–3278

    Article  CAS  Google Scholar 

  6. Wei TY, Yeh PH, Lu SY, Wang ZL (2009) Gigantic enhancement in sensitivity using Schottky contacted nanowire nanosensor. J Am Chem Soc 131:17690–17695

    Article  CAS  Google Scholar 

  7. Al-Assiri MS, Mostafa MM, Ali MA, El Desoky MM (2016) Structural and gas sensing properties of annealed ZnO thin film. Silicon 8:361–367

    Article  CAS  Google Scholar 

  8. Law M, Greene LE, Johnson JC, Saykally R, Yang PD (2005) Nanowire dyesensitized solar cells. Nature Mater 4:455–459

    Article  CAS  Google Scholar 

  9. Wei YG, Xu C, Xu S, Li C, Wu WZ, Wang ZL (2010) Planar waveguide-nanowire integrated three-dimensional dyesensitized solar cells. Nano Lett 10:2092–2096

    Article  CAS  Google Scholar 

  10. Rabenau A (1985) The role of hydrothermal synthesis in preparative chemistry. Angew Chem Int Ed Engl 24:1026–1040

    Article  Google Scholar 

  11. Huang J, Matsunaga N, Shimanoe K, Yamazoe N, Kunitake T (2005) Nanotubular SnO2 templated by cellulose fibers: synthesis and gas sensing. Chem Mater 17:3513–3518

    Article  CAS  Google Scholar 

  12. Yadav A, Prasad V, Kathe A, Raj S, Yadav D, Sundaramoorthy C, Vigneshwaran N (2006) Functional finishing in cotton fabrics using ZnO nanoparticles. Bull Mater Sci 29:641–645

    Article  CAS  Google Scholar 

  13. Izu N, Murayama N, Shin W, Itoh T, Matsubara I (2008) Preparation of SnO2 nanoparticles less than 10 nm in size by precipitation using hydrophilic carbon black powder. Mater Lett 62-2:313–316

    Article  Google Scholar 

  14. Liu Y, Zheng C, Wang W, Yin C, Wang G (2001) Production of SnO2 nanorods by redox reaction. Adv Mater 13:1883–1887

    Article  CAS  Google Scholar 

  15. Liu YK, Zheng CL, Wang WZ, Zhan YJ, Wang GG (2001) Production of SnO2 nanorods by redox reaction. J Cryst Growth 233:8–12

    Article  CAS  Google Scholar 

  16. Xu CK, Xu GD, Liu YK, Zhao XL, Wang GH (2002) Preparation and characterization of SnO2 nanorods by thermal decomposition of SnC2O4 precursor. Scripta Mater 46:789–792

    Article  CAS  Google Scholar 

  17. El-Desoky MM, Ali MA, Afifi G, Imam H (2014) Annealing effects on the structural and optical properties of growth ZnO thin films fabricated by pulsed laser deposition (PLD). J Mater Sci: Mater Electron 25:5071–5077

    CAS  Google Scholar 

  18. Wang H, Xu JZ, Zhu JJ., Chen HY (2002) Preparation of CuO nanoparticles by microwave irradiation. J Cryst Growth 244:88–94

    Article  CAS  Google Scholar 

  19. Kapustianyk V, Eliyashevskyy Y, Turkoa B, Czapla Z, Dacko S, Barwinski B (2012) Influence of technological factors on conductivity and dielectric dispersion in ZnO nanocrystalline thin films. J Alloy Compounds 531:64–69

    Article  CAS  Google Scholar 

  20. Al-Assiri MS, Mostafa MM, Ali MA, El Desoky MM (2015) Optical properties of annealed ZnO thin films fabricated by pulsed laser deposition. Silicon 7:393–400

    Article  CAS  Google Scholar 

  21. Al-Assiri MS, Mostafa MM, Ali MA, El Desoky MM (2014) Synthesis, structural and electrical properties of annealed ZnO thin films deposited by pulsed laser deposition (PLD). Superlattice Microst 75:127–135

    Article  CAS  Google Scholar 

  22. Ghosh D, Saha Sardar P, Biswas M, Mondal A, Mukherjee N (2010) Dielectric characteristics of poly(N-vinylcarbazole) and its nanocomposites with ZnO and acetylene black. Mater Chem Phys 123:9–12

    Article  CAS  Google Scholar 

  23. Wei XQ, Zhang Z, Yu YX, Man BY (2009) Comparative study on structural and optical properties of ZnO thin films prepared by PLD using ZnO powder target and ceramic target. Optics, Laser Technology 41:530–534

    Article  CAS  Google Scholar 

  24. Faal Hamedani N, Farzaneh F (2006) Synthesis of ZnO nanocrystals with hexagonal (Wurtzite) structure in water using microwave irradiation. Journal of Sciences, Islamic Republic of Iran 17:231–234

    Google Scholar 

  25. EwaMarkiewicz AK-R, Jesionowski T (2012) Structural characterisation of ZnO particles obtained by the emulsion precipitation method. J Nanomater 2012:9

    Google Scholar 

  26. Ramo S, Winnery J, Van Duzer T (1965) Fields and waves in communication electronics, first ed. Wiley, New York

    Google Scholar 

  27. Lanje AS., Sharma SJ, Ningthoujam RS, Ahn J-S, Pode RB (2013) Low temperature dielectric studies of zinc oxide (ZnO) nanoparticles prepared by precipitation method. Adv Powder Technol 24:331–335

    Article  CAS  Google Scholar 

  28. Kapustianyka V, Eliyashevskyya Y, Turkoa B, Czaplab ZC, Dackob S, Barwinski B (2012) Influence of technological factors on conductivity and dielectric dispersion in ZnO nanocrystalline thin films. J Alloys Compd 531:64–69

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. M. El-Desoky or M. S. Al-Assiri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Desoky, M.M., Ali, M.A., Afifi, G. et al. Effects of Annealing Temperatures on the Structural and Dielectric Properties of ZnO Nanoparticles. Silicon 10, 301–307 (2018). https://doi.org/10.1007/s12633-016-9445-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-016-9445-5

Keywords

Navigation