Skip to main content

Advertisement

Log in

Synthesis of Magnetic Fe 3 O 4 @polyethyleneimine.Mn(II) from Fe 3 O 4 , [3-(2,3-Epoxypropoxy)propyl]trimethoxysilane, Polyethyleneimine and Mn(II) Acetate as a Novel Silicon-Containing Polymeric Organic-Inorganic Hybrid Nanomaterial and Its Catalytic Investigation Towards the Oxidation of Cyclohexene, Ethyl Benzene and Toluene in the Presence of H 2 O 2 as an Oxidant

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The surfaces of Fe3 O 4 nanoparticles were modified with [3-(2,3 epoxypropoxy)propyl]trimethoxysilane and polyethylenimine (PEI) and then manganese acetate was loaded on Fe3 O 4@PEI and the resultant Fe3 O 4@PEI.Mn nanoparticles applied as a heterogeneous nanocatalyst. The prepared Fe3 O 4@PEI nanoparticles were characterized by FTIR, powder X-ray diffraction, TGA, VSM, SEM and TEM. The EDAX analysis was used to identify the elemental composition of the prepared Fe3 O 4@PEI.Mn nanoparticles. The catalytic activity and selectivity of the Fe3 O 4@PEI.Mn was examined in cyclohexene, ethyl benzene and toluene oxidation reaction with 30 % aqueous H2 O 2 as an oxidant. Furthermore, the effect of reaction parameters such as kinds of solvents,

temperature, oxidant amount and catalyst reusability were investigated. Results show that the original properties of the nanoparticles were well preserved and also good activity and reusability were observed in the oxidation of cyclohexene, ethyl benzene and toluene. Moreover, this heterogeneous catalyst can be recovered with a magnetic field and reused for several times without noticeable loss of catalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ghasemi S, Sadighi A, Heidary M, Bozorgi-Koushalshahi M, Habibi Z, Faramarzi M A (2013). IET Nanobiotechnol 7:100–108

    Article  CAS  Google Scholar 

  2. Nemati F, Saeedirad R (2013). Chin Chem Lett 24:370–372

    Article  CAS  Google Scholar 

  3. Maleki A (2012). Tetrahedron 68:7827–7833

    Article  CAS  Google Scholar 

  4. Yoon T J, Lee W, Oh Y S, Lee J K (2003). New J Chem 27:227–229

    Article  CAS  Google Scholar 

  5. Kiasat A R, Davarpanah J (2015). Res Chem Intermed 41:2991–3001

    Article  CAS  Google Scholar 

  6. Elliott D W, Zhang W X (2001). Environ Sci Technol 35:4922–4926

    Article  CAS  Google Scholar 

  7. Takafuji M, Ide S, Ihara H, Xu Z (2004). Chem Mater 16:1977–1983

    Article  CAS  Google Scholar 

  8. Guo X, Chen F (2005). Environ Sci Technol 39:6808–6818

    Article  CAS  Google Scholar 

  9. Byrne S J, Corr S A, Gun’ko Y K, Kelly J M, Brougham D F, Ghosh S (2004). Chem Commun 22:2560–2561

    Article  Google Scholar 

  10. Nasongkla N, Bey E, Ren J, Ai H, Khemtong C, Guthi J S, Chin S F, Sherry A D, Boothman D A, Gao J (2006). Nano Lett 6:2427–2430

    Article  CAS  Google Scholar 

  11. Hiergeist R, Andra W, Buske N, Hergt R, Hilger I, Richter U, Kaiser W (1999). J Magn Magn Mater 201:420–422

    Article  CAS  Google Scholar 

  12. Hayashi T, Hirono S, Tomita M, Umemura S (1996). Nature 381:772–774

    Article  Google Scholar 

  13. Franzreb M, Herzberg M S, Hobley T J, Thomas O R T (2006). Appl Microbiol Biotechnol 70:505–516

    Article  CAS  Google Scholar 

  14. Couvreur P, Vauthier C (2006). Pharm Res 23:1417–1450

    Article  CAS  Google Scholar 

  15. Gupta A K, Curtis A S (2004). J Mater Sci -Mater Med 15:493–496

    Article  CAS  Google Scholar 

  16. Neuberger T, Schoepf B, Hofmann H, Hofmann M, von Rechenberg B (2005). J Magn Magn Mater 293:483–496

    Article  CAS  Google Scholar 

  17. Shokouhimehr M, Piao Y, Kim J, Jang Y, Hyeon T (2007). Angew Chem Int Ed 46:7039–7043

    Article  CAS  Google Scholar 

  18. Polshettiwar V, Varma R S (2010). Green Chem 12:743–754

    Article  CAS  Google Scholar 

  19. Shylesh S, Schunemann V, Thiel W R (2010). Angew Chem Int Ed 49:3428–3459

    Article  CAS  Google Scholar 

  20. Lu A H, Salabas E L, Schuth F (2007). Angew Chem Int Ed 46:1222–1244

    Article  CAS  Google Scholar 

  21. Chikazumi S, Taketomi S, Ukita M, Mizukami M, Miyajima H, Setogawa M, Kurihara Y (1987). J Magn Magn Mater 65:245–251

    Article  CAS  Google Scholar 

  22. Hu A, Yee G T, Lin W (2005). J Am Chem Soc 127:12486– 12487

    Article  CAS  Google Scholar 

  23. Nikitenko S I, Koltypin Y, Palchik O, Felner I, Xu X N, Gedanken A (2001). Angew Chem Int Ed 40:4447–4449

    Article  CAS  Google Scholar 

  24. Faraji M, Yamini Y, Rezaee M (2010). J Iran Chem Soc 7:1–37

    Article  CAS  Google Scholar 

  25. Saeedi M S, Tangestaninejad S, Moghadam M, Mirkhani V, Mohammadpoor-Baltork I, Khosropour A R (2013). Polyhedron 49:158–166

    Article  CAS  Google Scholar 

  26. Dehghani F, Sardarian A R, Esmaeilpour M J (2013). Org Chem 743:87–96

    Article  CAS  Google Scholar 

  27. Zolfigol M A, Khakyzadeh V, Moosavi-Zare A R, Rostami A, Zare A, Iranpoor N, Beyzavi M H, Luque R (2013). Green Chem 15:2132–2140

    Article  CAS  Google Scholar 

  28. Wilson L, Fernandez-Lorente G, Fernandez-Lafuente R, Illanes A, Guisan J M, Palomo J M (2006). Enzyme Microb Technol 39:750–755

    Article  CAS  Google Scholar 

  29. Khoobi M, Motevalizadeh S F, Asadgol Z, Forootanfarc H, Shafiee A, Faramarzi M A (2014). Biochem Eng J 88:131–141

    Article  CAS  Google Scholar 

  30. Loua L, Yua K, Wangb Y, Zhua Z (2012). Appl Surf Sci 258:3744–3749

    Article  Google Scholar 

  31. Xiaa T, Guana Y, Yanga M, Xionga W, Wangb N, Zhaoa S, Guob C (2014). Colloids Surf A Physicochem Eng Asp 443:552– 559

    Article  Google Scholar 

  32. Loua L, Yua K, Zhanga Z, Huanga R, Wangb Y, Zhua Z (2012). Appl Surf Sci 258:8521–8526

    Article  Google Scholar 

  33. Veerakumara P, Velayudham M, Lu K L, Rajagopal S (2013). Appl Catal A 455:247–260

    Article  Google Scholar 

  34. Shen Z, Chen Y, Frey H, Stiriba S E (2006). Macromolecules 39:2092–2099

    Article  CAS  Google Scholar 

  35. Wang M L, Jiang T T, Lu Y, Liu H J, Chen Y (2013). J Mater Chem A 1:5923–5933

    Article  CAS  Google Scholar 

  36. Weissermel K, Arpe H J (1996) Industrielle Organische Chemie. Tokyo Kagakudouninn, Tokyo

    Google Scholar 

  37. Cui H T, Zhang Y, Qiu Z G, Zhao L F, Zhu Y L (2010). Appl Catal B 101:45–53

    Article  CAS  Google Scholar 

  38. Kooti M, Afshari M (2012). Mater Res Bull 47:3473–3478

    Article  CAS  Google Scholar 

  39. Lu T, Zhang L, Ge Z, Ji Y, Lu M (2015). Appl Organomet Chem 29:276–279

    Article  CAS  Google Scholar 

  40. Ruano D, Díaz-García M, Alfayate A, Sánchez-Sánchez M (2015). ChemCatChem 7:674–681

    Article  CAS  Google Scholar 

  41. Chen S, Liu Z, Shi E, Chen L, Wei W, Li H, Cheng Y, Wan X (2011). Org Lett 13:2274–2277

    Article  CAS  Google Scholar 

  42. Shringarpure P, Patel A (2010). J Mol Catal A Chem 321:22–26

    Article  CAS  Google Scholar 

  43. Vafaeezadeh M, Hashemi M M (2013). Chem Eng J 221:254–257

    Article  CAS  Google Scholar 

  44. Moghadam M, Mirkhani V, Angestaninejad S, Mohammadpoor-Baltork I, Javadi M M (2010). Polyhedron 29:648–654

    Article  CAS  Google Scholar 

  45. Maurya M R, Kumar A, Pessoa J C (2011). Coord Chem Rev 255:2315–2344

    Article  CAS  Google Scholar 

  46. Shringarpure P A, Patel A (2011). Chem Eng J 173:612–619

    Article  CAS  Google Scholar 

  47. Jiang W, Gorden J D, Goldsmith C R (2012). Inorg Chem 51:2725–2727

    Article  CAS  Google Scholar 

  48. Mu B, Liu P, Dong Y, Lu C, Wu X (2010). J Polym Sci Part A Polym Chem 48:3135–3144

    Article  CAS  Google Scholar 

  49. Zhou L, Li G, An T, Li Y (2010). Res Chem Intermed 36:277–278

    Article  CAS  Google Scholar 

  50. Li Y, Fu X, Gong B, Zou X, Tu X, Chen J (2010). J Mol Catal A 322:55–62

    Article  CAS  Google Scholar 

  51. Maiti S K, Dinda S, Gharah N, Bhattacharyya R (2006). New J Chem 30:479–489

    Article  CAS  Google Scholar 

  52. Parida KM Soumya-Dash S (2009). J Mol Catal A 306:54–61

    Article  Google Scholar 

  53. Li X, Lu B, Sun J, Wang X, Zhao J, Cai Q (2013). Catal Commun 39:115–118

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ali Ramazani or Sang Woo Joo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarasi, R., Ramazani, A., Ghorbanloo, M. et al. Synthesis of Magnetic Fe 3 O 4 @polyethyleneimine.Mn(II) from Fe 3 O 4 , [3-(2,3-Epoxypropoxy)propyl]trimethoxysilane, Polyethyleneimine and Mn(II) Acetate as a Novel Silicon-Containing Polymeric Organic-Inorganic Hybrid Nanomaterial and Its Catalytic Investigation Towards the Oxidation of Cyclohexene, Ethyl Benzene and Toluene in the Presence of H 2 O 2 as an Oxidant. Silicon 10, 257–265 (2018). https://doi.org/10.1007/s12633-016-9436-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-016-9436-6

Keywords

Navigation