Skip to main content

Advertisement

Log in

Investigation of Methane and Carbon Dioxide Gases Permeability Through PEBAX/PEG/ZnO Nanoparticle Mixed Matrix Membrane

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

This paper presents a new kind of mixed matrix membrane using polyethylene glycol (PEG) as organic filler. In this mix, PEG and ZnO nanoparticles (as inorganic modifier) were added to a PEBAX polymer matrix at different concentration to study their effects on the morphology, permeability and selectivity of the membrane. To characterize the chemical structure of samples FTIR and for morphological characterization, XRD and SEM were employed. The permeability of pure gases CO2 and CH4 in PEBAX, and PEBAX/PEG/ZnO with different ZnO and PEG contents were determined by the constant pressure-variable volume method. Also influences of temperature and pressure on permeation properties of these membranes were studied. The results were indicative of an increase in gas permeability and enhancement which for neat PEBAX membrane, CO2/CH4 permeability of 44.6 and 2.193 Barrer and selectivity of 20.39 were obtained. The permeability of PEBAX/PEG (40 wt.%)/ZnO (4 wt.%) membrane was enhanced to 94.49 Barrer for CO2 and 3.933 for CH4. The selectivity of PEBAX/ZnO(4 wt.%) improved to 31.58 for the CO2/CH4 gas pair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baker RW (2004) Membrane technology and applications. Membrane Technology and Research, California

    Book  Google Scholar 

  2. Yampolskii Y, Freeman B (2010) Membrane gas separation. Wiley, United Kingdom

    Book  Google Scholar 

  3. Paul DR, Yampolskii YP (1994) Polymeric gas separation membranes. CRC Press, Florida

    Google Scholar 

  4. Robeson LM (2008) The upper bound revisited. J Membr Sci 320:390–400

    Article  CAS  Google Scholar 

  5. Chung TS, Jiang LY, Li Y, Kulparathipanja (2007) Mixed matrix membranes (MMMS) Comprising organic polymers with dispersed inorganic fillers for gas separation. Prog Polym Sci 32:483–507

    Article  CAS  Google Scholar 

  6. Suryamurali R, Sridhar S, Sankarshana T, Ravikumar YVL (2010) Gas Permeation behavior of pebax-1657 nanocomposite membrane incorporated with multiwalled carbon nanotubes. Ind Eng Chem Res 49:6530–6538

    Article  Google Scholar 

  7. Balta S, Sotto A, Luis P, Benea L, Vander Bruggen B, kim J (2012) A new outlook on membrane enhancement with nanoparticles: the alternative of ZnO. J Membr Sci 389:155–161

    Article  CAS  Google Scholar 

  8. Surya Murali R, Praveenkumar K, Ismail AF, Sridhar S (2014) Nanosilica and H-Mordenite in corporated poly(ether-block-amide)-1657 membranes for gaseous separations. Microporous Mesoporous Mater 197:291–298

    Article  CAS  Google Scholar 

  9. Car A, Stropnik C, Yave W, Peinemann KV (2008) Pebax/polyethylene glycol blend thin film composite membranes for CO2 separation: performance with mixed gases. Sep Purif Technol 62:110–117

    Article  CAS  Google Scholar 

  10. Bernardo P, Jansen JC, Bazzarelli F, Tasselli F, Fuoco A, Friess K, Izak P, Jarmarova C, Kacirkova M, Clarizia G (2012) Gas transport properties of pebax/ room temperature ionic liquid gel membranes. Sep Purif Technol 97:73–82

    Article  CAS  Google Scholar 

  11. Wang SH, Liu Y, Huang SH, Wu H, Li Y, Tian Z, Jiang Z (2014) Pebax-PEG-MWCNT hybrid membranes with enhanced CO2 capture properties. J Membr Sci 460:62–70

    Article  CAS  Google Scholar 

  12. Kim JH, Lee YM (2001) Gas permeation properties of poly (amide-6-b-ethylene oxide)-Silica hybrid membranes. J Membr Sci 193:209–225

    Article  CAS  Google Scholar 

  13. Nafisi V, Hagg MB (2014) Development of dual layer of ZIF-8/PEBAX-2533 mixed matrix membrane for CO2 capture. J Membr Sci 459:244–255

    Article  CAS  Google Scholar 

  14. Hassanajili SH, Khademi MA, Keshavarz P (2014) Influence of various types of silica nanoparticles on permeation properties of polyurethane/silica mixed matrix membranes. J Membr Sci 453:369–383

    Article  CAS  Google Scholar 

  15. Rahman MM, Filiz V, Shishatskiy S, Abetz S, Neuman C, Bolmer S, Khan MM, Abetz V (2013) PEBAX with PEG Functionalized poss. as nanocomposite membranes for CO2 separation. J Membr Sci 437:286–297

    Article  CAS  Google Scholar 

  16. Sridhar S, Suryamurali R, Smitha B, Aminabhavi TM (2007) Development of cross linked poly (ether-block-amide) membrane for CO2/CH4 separation. Colloids Surf 297:267–274

    Article  CAS  Google Scholar 

  17. Anitha S, Brabu B, John Thiruvadigal D, Gopalakrishnan C, Natarajan TS (2012) Optical, bactericidal and water repellent properties of electrospun nano – composite membranes of cellulose acetate and ZnO. Carbohydr Polym 87:1065–1072

    Article  CAS  Google Scholar 

  18. Sharma BK, khare N, Dhawan SK, Gupta HC (2009) Dielectric Properties of nano ZnO- Polyaniline composite in the microwave frequency range. J Alloys Compd 477:370–373

    Article  CAS  Google Scholar 

  19. SuryaMurali R, Ismail AF, Rahman MA, Sridhar S (2014) Mixed matrix membranes of pebax – 1657 loaded with 4A zeolite for gaseous separations. Sep Purif Technol 129:1–8

    Article  CAS  Google Scholar 

  20. Roy R (1990) A primer on the taguchi method. Van Nostrand Reinhold, New York

    Google Scholar 

  21. Babaei-Dehkordi A, Moghaddam J, Mostafaei A (2013) An optimization study on the leaching of zinc cathode melting furnace slag in ammonium chloride by Taguchi design and synthesis of ZnO nanorods via precipitation methods. Mater Res Bull 48:4235–4247

    Article  CAS  Google Scholar 

  22. Yiamsawas D, Boonpavanitchakul Kangwansupamonkon KW (2011) Optimization of experimental parameters based on the Taguchi robust design for the formation of zinc oxide nanocrystals by solvothermal method. Mater Res Bull 46:639–642

    Article  CAS  Google Scholar 

  23. Hassanajili SH, Masoudi E, Kaimi GH, Khademi MA (2013) Mixed matrix membranes based on polyetherurethane and polyester urethane containing silica nanoparticles for separation of CO2/CH4 gases. Sep Purif Technol 116:1–12

    Article  CAS  Google Scholar 

  24. Sadeghi M, Semsarzadeh MA, Moade H (2009) Enhancement of gas separation properties of polybenzimidazole membrane by incorporation of silica nano particles. J Membr Sci 331:21–30

    Article  CAS  Google Scholar 

  25. Hu Z, Oskam G, Searson PC (2003) Influence of solvent on the growth of ZnO nanoparticles. J Colloid Interface Sci 263:454–460

    Article  CAS  Google Scholar 

  26. Yu B, Cong H, Li Z, Tang J, Zhao XS (2013) Pebax-1657 nanocomposite membranes in corporate with nanoparticles/colloids/carbon nanotubes for CO2/N2 and CO2/H2 separation. J Appl Polym Sci 130:2867–2876

    Article  CAS  Google Scholar 

  27. Yave W, Car A, Peinemann KV (2010) Nanostructured membrane material designed for carbon dioxide separation. J Membr Sci 350:124–129

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hossein Jazebizadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jazebizadeh, M.H., Khazraei, S. Investigation of Methane and Carbon Dioxide Gases Permeability Through PEBAX/PEG/ZnO Nanoparticle Mixed Matrix Membrane. Silicon 9, 775–784 (2017). https://doi.org/10.1007/s12633-016-9435-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-016-9435-7

Keywords

Navigation