Skip to main content
Log in

Synthesis of Highly Crystalline Needle-Like Silicon Nanowires for Enhanced Field Emission Applications

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Needle-like silicon nanowires (SiNWs) were successfully synthesized on gold-coated silicon substrates using a very high frequency plasma enhanced chemical vapor deposition method (VHF-PECVD). The prepared samples were characterized by field emission scanning electron microscopy (FESEM) with energy dispersive X-ray spectroscopy (EDX), high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD) and photoluminescence (PL). XRD analysis confirmed formation of single crystalline SiNWs along (111) crystalline planes and microscopic studies revealed formation of NWs with diameters ranging from 10 to 100 nm and lengths of a few micrometers. Furthermore, the presence of gold nanoparticles on the tip of the NWs verified the vapor–liquid–solid growth mechanism of SiNWs. It was also demonstrated that SiNWs are composed of well-crystallized silicon cores and an amorphous shell. The obtained results verified potential application of such structures in field emission displays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu L, Donnell BO, Alet PJ, Cabarrocas PR (2010) Sol Energy Mater Sol Cells 94:1855

    Article  CAS  Google Scholar 

  2. Samuelson L (2003) Materials Today 6:22

    Article  CAS  Google Scholar 

  3. Duan X, Huang Y, Cui Y, Wang J, Lieber CM (2001) Nature 409:66

    Article  CAS  Google Scholar 

  4. Shanand Y, Fonash SJ (2008) ACS Nano 2(3):429

    Article  Google Scholar 

  5. Wanekaya AK, Chen W, Myung NV, Mulchandani A (2006) Electroanalysis 18(6):533

    Article  CAS  Google Scholar 

  6. Kelzenberg MD, Turner-Evans DB, Kayes BM, Filler MA, Putnam MC, Lewis NS, Atwater HA (2008) Nano Letter 8(2):710

    Article  CAS  Google Scholar 

  7. Najmzadeh M, Michielis LD, Bouvet D, Dobrosz P, Olsen S, Ionescu AM (2010) Microelectron Eng 87:1561

    Article  CAS  Google Scholar 

  8. Li Q, Koo SM, Edelstein MD, Suehle JS, Richter CA (2007) Nanotechnology 18:315202(5 pp)

    Google Scholar 

  9. Wu Y, Fan R, Yang P (2002) Nano Letter 2:83

    Article  CAS  Google Scholar 

  10. Zhang YF, Tang YH, Lam C, Wang N, Lee CS, Bello I, Lee ST (2000) J Cryst Growth 212:115

    Article  CAS  Google Scholar 

  11. Zhang YF, Tang YH, Wang N, Yu DP, Lee CS, Bello I, Lee ST (1998) Appl Phys Lett 72:1835

    Article  CAS  Google Scholar 

  12. Wu Y, Chi Y, Huynh L, Barrelet CJ, Bell DC, Lieber CM (2004) Nano Letter 4:433

    Article  CAS  Google Scholar 

  13. Zardo I, Yu L, Conesa BS, Estradé S, Pierre JA, Rossler, Frimmer JM, Cabarrocas PRi, Peiró F, Arbiol J, Morante JR, Morral AFi (2009) Nanotechnology 20:155602

    Article  CAS  Google Scholar 

  14. Zhou WM, Yang B, Yang ZX, Zhu F, Yan LJ, Zhang YF (2006) Appl Surf Sci 252:5143

    Article  CAS  Google Scholar 

  15. McIlroy DN, Alkhateeb A, Zhang D, Aston DE, Marcy AC, Norton MG (2004) J Phys Condens Matter 16:415

    Article  Google Scholar 

  16. Westwater J, Gosain DP, Usui S (1998) Physics Status solidi A 165(1):37

    Article  CAS  Google Scholar 

  17. Hamidinezhad H, Wahab Y, Othaman Z (2011) J Mater Sci 46:5085

  18. Wolkin MV, Jorne J, Fauchet PM, Allan G, Derlerue C (1999) Phys Rev Lett 82:197

    Article  CAS  Google Scholar 

  19. Sa’ar A, Reichman Y, Dovrat M, Krapf D, Jedrzejewski J, Balberg I (2005) Nano Letter 5:2443

    Article  Google Scholar 

  20. Saar A, Dovrat M, Jedrzejewski J, Balberg I (2007) Physica E 38:122

    Article  CAS  Google Scholar 

  21. Qi J, White JM, Belcher AM, Masumoto Y (2003) Chem Phys Lett 372:763

    Article  CAS  Google Scholar 

  22. Noe P, Guignard J, Gentile P, Delamadeleine E, Calvo V, Ferret P, Dhalluin F, Baron T (2007) J Appl Phys 102:016103

    Article  Google Scholar 

  23. Palomino J, Varshney D, Resto O, Weiner BR, Morell G (2014) ACS Appl Mater Interfaces 6:13815

    Article  CAS  Google Scholar 

  24. Fang X, Bando Y, Gautam UK, Ye Ch, Golberg D (2008) J Mater Chem 18:509

    Article  CAS  Google Scholar 

  25. Tzeng YF, Leea YCh, Lee ChY, Chiu HT, Lin IN (2008) Diam Relat Mater 17:753

    Article  CAS  Google Scholar 

  26. Zhao F, Cheng G, Zheng R, Zhao D, Wu Sh, Deng J (2011) Nanoscale Res Lett 6:176

    Article  Google Scholar 

  27. Joyce HJ, Gao Q, Tan HH, Jagadish C, Kim Y, Fickenscher MA (2009) Nano Lett 9:695

    Article  CAS  Google Scholar 

  28. Hamidinezhad H, Wahab Y, Othaman Z, Ismail AK (2011) Plasmonics 6:791

    Article  CAS  Google Scholar 

  29. Wagner RS, Ellis WC (1964) Appl Phys Lett 4:89

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Habib Hamidinezhad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamidinezhad, H., Ashkarran, A.A. & Abdul-Malek, Z. Synthesis of Highly Crystalline Needle-Like Silicon Nanowires for Enhanced Field Emission Applications. Silicon 9, 379–384 (2017). https://doi.org/10.1007/s12633-016-9424-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-016-9424-x

Keywords

Navigation