Abstract
Cubic nanocrystalline silicon carbide (3C-SiC) films have been deposited by using the hot wire chemical vapor deposition (HW-CVD) method at a low substrate temperature and at high deposition rate. Structural, optical and electrical properties of these films have been investigated as a function of H2 dilution ratio. The formation of 3C-SiC films has been confirmed from low angle XRD analysis, Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy, x-ray photoelectron spectroscopy (XPS) and dark and photoconductivity measurements. The FTIR spectroscopy analysis revealed that the bond densities of Si-H and C-H decrease while that of Si-C increases with increase in the H2 dilution ratio. The total hydrogen content decreases with increase in H2 dilution ratio and was found < 15 at. % over the entire range of H2 dilution ratio studied whereas the band gap show an increasing trend with increase in the H2 dilution ratio.
This is a preview of subscription content, access via your institution.
References
Yang X, Zhao-hui C, Feng C (2014). J Asian Ceram Soc 2:305–309
Chen T, Huang Y, Dasgupta A, Luysberg M, Houben L, Yang D, Carius R, Finger F (2012). Sol Energy Mater Sol Cells 98:370–378
Fuchs F, Soltamov V, Vath S, Baranov P, Mokhov E, Astakhov G, Dyakonov V (2013). Sci Rep 3(1-4):1637
Windischmann H (1991). J Vac Sci Technol A 9:2459–2463
Marsi P (1998). Surf Sci Rep 48:1–51
Li S, Cao Y, Xu J, Rui Y, Li W, Chen K (2013). Appl Surf Sci 270:287–291
Ricciardi C, Fanchini G, Mandracci P (2003). Diamond Relat Mater 12:1236–1240
Singh A, Chandra S, Kumar S, Bose G (2012). J Micromech Microeng 22(2):025010
Filipescu M, Velisa G, Ion V, Andrei A, Scintee N, Ionescu P, Stanciu S, Pantelica D, Dinescu M (2011). J Nucl Mater 416:18–21
Wang Q, Fu S, Qu S, Liu W (2007). Solid State Commun 144:277–281
Verucchi R, Aversa L, Nardi M, Taioli S, Beccara S, Alfe D, Nasi L, Rossi F, Salviati G, Iannotta S (2012). J Am Chem Soc 134:17400–17403
Mandracci P (2001) Ph. D Thesis, Trento University, Italy
Jeong S, Nam D, Kim B, Yoon J, Lee M, Kim K, Yoon Y, Seo W (2014). Appl Phys Express 7(2):025501
Yang X, Zhao-hui C, Feng C (2014). J Asian Ceram Soc 2:305–309
Panda S, Sengupta J, Jacob C (2010). J Nanosci Nanotechnol 10:3046–3052
Ricciardi C, Primiceli A, Germani G, Rusconi A, Giorgis F (2006). J Non-Cryst Solids 352:1380–1383
Rajagopalan T, Wang X, Lahlouh B, Ramkumar C, Dutta P, Gangopadhyay S (2003). J Appl Phys 94:5252–5260
Dasgupta A, Klein S, Houben L, Carius R, Finger F, Luysberg M (2008). Thin Solid Films 516:618–621
Klein S, Carius R, Finger F, Houben L (2006). Thin Solid Films 501:169–172
Chen T, Huang Y, Yang D, Carius R, Finger F (2011). Thin Solid Films 519:4511–4515
Chen T, Huang Y, Dasgupta A, Luysberg M, Houben L, Yang D, Carius R, Finger F (2012). Sol Energy Mater Sol Cells 98:370–376
Miyajima S, Yamada A, Konagai M (2006). Thin Solid Films 501:186–189
Tabata A, Komura Y (2007). Surf Coat Technol 201:8986–8990
Tabata A, Komura Y, Narita T, Kondo A (2009). Thin Solid Films 517:3516–3519
Hoshide Y, Komura Y, Tabata A, Kitagawa A, Kondo A (2009). Thin Solis Films 517:3520–3523
Tehrani F, Badaruddin M, Rahbari R, Muhamad M, Rahman S (2012). Vacuum 86:1150–1154
Waman V, Kamble M, Pramod M, Funde A, Sathe V, Gosavi S, Jadkar S (2011). J Nano-Electron Phys 3:590–600
Swanepoel R (1983). J Phys E: Sci Instrum 16:1214–1222
Abrbrosone G, Capezzuto P P, Catalanotti S, Coscia U, Mormone S (2006). Philos Mag B 80(/4):497–506
Mori M, Tabata A, Mizutani T (2006). Thin Solid Films 501:177–180
Cheng Q, Long J, Ni Z, Rider A, Ostrikov K (2008). J Phys D: Appl Phys 41:055406–055414
Karimi B, Dow A, Kherani N (2013) Proceedings of 5th International Nanoelectronics Conference (INEC), Singapore, p 160
Lucovsky G, Nemanich R, Knights J (1979). Phys Rev B 19:2064
Tabata A, Kuroda M, Mori M, Mizutani T, Suzuoki Y (2004). J Non-Cryst Solids 338:521–524
Ambrosone G, Capezzuto P, Catalanotti S, Coscia U, Mormone S (2009). Phil Maz B 80:497–506
Kuenle M, Janz S, Eibl O, Berthold C, Presser V, Nickel K (2009). Mater Sci Eng B 159:355–360
Kaneko T, Nemoto D, Horiguchi A, Miyakawa N (2005). J Cryst Growth 275:e1097–e1101
Ray S, Das D, Barua A (1987). Sol Energy Mater 15:43–57
Basa K, Smith F (1990). Mater Res Soc Symp Proc 162:439
Shanks H, Faug C, Ley L, Cardona M, Demand F, Kalbitzer S (1980). Phys Status Solidi B 100:43–56
Liao F, Park S, Larson J, Zachariah M, Girshick S (2003). Mater Lett 57:1982–1986
Nakashima S, Harima H (1997). Phys Status Solidi A 162:39–64
Tanaka T, Maruyama E, Shimida T, Okamoto H (1999) Amorphous Silicon John Wiley and Sons Ltd, p 78
Richter H, Wang Z, Ley L (1981). Solid State Commun 39 :625–629
Swain B, Dusane R (2006). Mater Chem Phys 99:240–246
Feldman D, Parker J, Choyke W, Patrik L (1968). Phys Rev 173:787–793
Chen T, Kohler F, Heidt A, Huang Y, Finger F, Carius R (2011). Thin Solid Films 519:4511–4515
Karch K, Pavone P, Windl W, Shutt O, Strauch D (1994). Phys Rev B 50:17054–17063
Wu T, Shen H, Cheng B, Pan Y, Liu B, Shen J (2011). Appl Surf Sci 258:999–1003
Ei Khakani M, Chaker M, Jean J, Boily S, Pepin H, Kieffer J, Gujrathi S (1993). J Appl Phys 74:2834–2840
Soloman I, Schmidt M, Selemaud C, Driss K (1988). Phys Rev B 38:13263–13270
Tauc J, Grigorovici R, Vancu A (1966). Phys Status Solidi 15 :627–637
Saitoh T, Shimada T, Migitaka M (1983). J Non-Cryst Solids 59:715–718
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kamble, M., Waman, V., Mayabadi, A. et al. Synthesis of Cubic Nanocrystalline Silicon Carbide (3C-SiC) Films by HW-CVD Method. Silicon 9, 421–429 (2017). https://doi.org/10.1007/s12633-015-9358-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12633-015-9358-8
Keywords
- 3C-SiC films
- HW-CVD
- Low angle XRD
- Raman spectroscopy
- XPS