Skip to main content
Log in

Microstructure and Wear Behavior of Single layer (CrN) and Multilayered (SiN/CrN) Coatings on Particulate Filled Aluminum Alloy Composites

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

This article presents the slurry erosive wear behavior of single and multilayer coatings on granite powder reinforced aluminum alloy composites for hydro-turbine blade material. The composites were fabricated by stir casting technique with different weight fraction (0, 2, 4, 6wt.%) of granite powder in 1050 aluminum alloy. In this study, the slurry jet erosive performance of uncoated, single layer and multilayer coating granite powder filled alloy composites in a slurry jet wear test was conducted for four different operating parameters such as filler content (0-6wt.%), impact velocity (10-25 m/s), impingement angle (30-75 0) and erodent discharge (160-280 gm), respectively. The slurry erosion rate was a maximum at 0wt.% granite powder reinforcement in uncoated, single layer and multilayer coating samples such as: 0.0203 gm/kg, 0.00981 gm/kg and 0.00756 gm/kg, respectively at impact velocity of 25 m/sec. Taguchi’s orthogonal array (L 16) was applied to study the experimental results of the uncoated and coated alloy composites. A correlation was derived from the results of the Taguchi experimental design and a proposed predictive equation for estimation of slurry erosion rate of these composites. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) were conducted to analyze the topography of the eroded surface of uncoated and coated granite powder reinforced aluminum alloy composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ramesh CS, Kumar S, Devraj DS, Keshavmurthy R (2011) Wear 10:445–453

    Google Scholar 

  2. Grawel H, Bhandari S, Singh H (2012) Metall Mater Trans A 43:3387–3401

    Article  Google Scholar 

  3. Zahavi J, Wagner HJ, Natesan K (1978) American Institute of Mining and Metallurgical and Petroleum Engineers, Warrendale, PA, 226

  4. Aylor DM, Moran PJ (1985) J Electrochem Soc 132:1277–1281

    Article  CAS  Google Scholar 

  5. Ramchandran M, Radhakrishnan K (2007) Wear 262: 1450–1462

    Article  Google Scholar 

  6. Turenne S, Chitgny Y, Simrod D, Caron S, Masounave J (1990) Wear 141:147–158

    Article  CAS  Google Scholar 

  7. Romero J, Martınez E, Esteve J, Lousa A (2004) Surface Coating Technology 335:180–181

  8. Chu X, Barnett SA (1995) J. Appl. Phys. 77(9):4403

    Article  CAS  Google Scholar 

  9. Caicedo JC, Cabrera G, Aperador W, Caicedo HH, Mejia A (2012) Vacuum 86:1886–1894

    Article  CAS  Google Scholar 

  10. Iwai Y, Miyajima T, Mizuno A, Honda T, Itou T, Hogmark S (2009) Wear 267:264–269

    Article  CAS  Google Scholar 

  11. Alegrıa-Ortega JA, Ocampo-Carmona LM, Suarez-Bustamante FA, Olaya-Florez JJ (2012) Wear 290–291:149–153

  12. Salgueiredo E, Almeidan FA, Amaral M, Neto MA, Oliveira FJ, Silva RF (2013) Wear 297:1064–1073

    Article  CAS  Google Scholar 

  13. Jianxin D, Fengfang W, Yunsong L, Youqiang X, Shipeng L (2012) Int J Refract Met Hard Mater 35:10–16

    Article  Google Scholar 

  14. Wiecinski P, Smolik J, Garbacz H, Kurzydlowski K J (2014) Vacuum 107:277–283

    Article  CAS  Google Scholar 

  15. Krella AJ (2013) Surface Coating Technology 228:115–123

    Article  CAS  Google Scholar 

  16. Lopez D, Sanchez C, Toro A (2005) Wear 258:684–692

    Article  CAS  Google Scholar 

  17. Agarwal G, Patnaik A, Sharma RK (2014) Silicon 6:155–168

    Article  CAS  Google Scholar 

  18. Kaundal R (2014) Silicon. doi:10.1007/s12633-014-9191-5

  19. Patnaik A, Mamatha TG, Biswas S, Kumar P (2012) Mater Des 36:511–521

    Article  CAS  Google Scholar 

  20. Finnie I (1972) Wear 19:81–90

    Article  CAS  Google Scholar 

  21. Hutchings IM (1981) Wear 70(1):269–281

    Article  CAS  Google Scholar 

  22. Rickerby DG, MacMillan NH (1980) Wear 60(2):369–382

    Article  CAS  Google Scholar 

  23. Levy A, Aghazadeh M, Hickey G (1986) Wear 108(1):23–41

    Article  CAS  Google Scholar 

  24. Padhy MK, Saini RP (2009) Energy 34(10):1477–83

    Article  CAS  Google Scholar 

  25. Prasad BK, Modi OP (2009) Trans Nonferrous Metals Soc China 19:277–286

    Article  CAS  Google Scholar 

  26. Ramesh C S, Keshavmurthy R, Channabasappa B H, Pramod S (2011) Mater Des 30:3713–3722

    Article  Google Scholar 

  27. Stack MM, Wang HW (1999) Wear (233–235):542–551

  28. Hutchings IM, Winter RE (1974) Wear 27(1):121–128

    Article  CAS  Google Scholar 

  29. Levy AV (1986) Wear 108(1):1–21

    Article  CAS  Google Scholar 

  30. Bellman JR, Levy AV (1981) Wear 70(1):1–27

    Article  CAS  Google Scholar 

  31. Levy AV, Chik P (1983) Wear 89(2):151–162

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amar Patnaik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gautam, V., Patnaik, A. & Bhat, I.K. Microstructure and Wear Behavior of Single layer (CrN) and Multilayered (SiN/CrN) Coatings on Particulate Filled Aluminum Alloy Composites. Silicon 8, 417–435 (2016). https://doi.org/10.1007/s12633-015-9357-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-015-9357-9

Keywords

Navigation