pp 1–7 | Cite as

Silicification in Leaves of Sorghum Mutant with Low Silicon Accumulation

  • Oshry Markovich
  • Santosh Kumar
  • Dikla Cohen
  • Sefi Addadi
  • Eyal Fridman
  • Rivka Elbaum
Original Paper



Silicon improves plants’ ability to tolerate stresses. It is taken up by roots as silicic acid, transported via the transpiration stream, and is unloaded in the shoot by specific silicon transporters. In grasses, silicon deposits may reach 10 % of the leaf dry weight. However, no molecular mechanism is known to control the deposition. Our purpose thus was to identify a sorghum mutant unable to absorb silicic acid and use it to study leaf silicification.


We generated and characterized a Sorghum bicolor knockout mutant in a root silicon transporter, SbLsi1, and followed leaf epidermal silicification, using an airSEM (air-scanning electron microscope).


The mutant contained 40 times less silica than the wild type (about 0.01 % per dry weight, compared to 3.7 %). The base of wild type leaf blades contained very few, partially silicified dumbbell-shaped silica cells. The silicification intensified towards the leaf tip. Contrary to this, the mutant leaf epidermis displayed empty and probably non-turgid dumbbells. Mature mutant leaves supplied with silicic acid through their base, accumulated silica in the cell walls along the vasculature. No specific dumbbell silicification was detected.


The loss of turgor may indicate that cell death is part of the development of dumbbell-shaped silica cells. These cells do not accumulate silica after turgor loss, suggesting that a biological process may be involved in their silicification.


AirSEM Lsi1 Phytoliths Plant silicification Sorghum bicolor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12633_2015_9348_MOESM1_ESM.pdf (552 kb)
(PDF 552 KB)


  1. 1.
    Ma JF, Yamaji N (2006) Silicon uptake and accumulation in higher plants. Trends Plant Sci 11:392–397. doi: 10.1016/j.tplants.2006.06.007 CrossRefGoogle Scholar
  2. 2.
    Ma JF (2010) Silicon transporters in higher plants. Adv Exp Med Biol 679:99–109CrossRefGoogle Scholar
  3. 3.
    Bockhaven JV, Vleesschauwer DD, Höfte M (2013) Towards establishing broad-spectrum disease resistance in plants: silicon leads the way. J Exp Bot 64:1281–1293. doi: 10.1093/jxb/ers329 CrossRefGoogle Scholar
  4. 4.
    Rafi MM, Epstein E, Falk RH (1997) Silicon deprivation causes physical abnormalities in wheat (Triticum aestivum L.) J Plant Physiol 151:497–501CrossRefGoogle Scholar
  5. 5.
    Sangster AG, Hodson MJ, Ling LEC (2009) Biomineralisation/environment interactions in conifers: Illustrated by hemlock, Tsuga canadensis (L.) Carr. Quat Int 193:3–10. doi: 10.1016/j.quaint.2007.08.025 CrossRefGoogle Scholar
  6. 6.
    Lux A, Luxová M, Abe J, et al. (2003) The dynamics of silicon deposition in the sorghum root endodermis. New Phytol 158: 437–441CrossRefGoogle Scholar
  7. 7.
    Yoshida S, Ohnishi Y, Kitagishi K (1962) Chemical forms, mobility and deposition of silicon in rice plant. Soil Sci Plant Nutr 8: 15–21. doi: 10.1080/00380768.1962.10430992 CrossRefGoogle Scholar
  8. 8.
    Sangster AG (1970) Intracellular silica deposition in immature leaves in three species of the Gramineae. Ann Bot 34: 245–257Google Scholar
  9. 9.
    Zhang C, Wang L, Zhang W, Zhang F (2013) Do lignification and silicification of the cell wall precede silicon deposition in the silica cell of the rice (Oryza sativa L.) leaf epidermis Plant Soil 372: 137–149. doi: 10.1007/s11104-013-1723-z CrossRefGoogle Scholar
  10. 10.
    Blackman E (1969) Observations on the development of the silica cells of the leaf sheath of wheat (Triticum aestivum). Can J Bot 47:827–838CrossRefGoogle Scholar
  11. 11.
    Paterson AH, Bowers JE, Bruggmann R, et al. (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556. doi: 10.1038/nature07723 CrossRefGoogle Scholar
  12. 12.
    Lawton JR (1980) Observations on the structure of epidermal cells, particularly the cork and silica cells, from the flowering stem internode of Lolium temulentum L. (Gramineae). Bot J Linn Soc 80:161–177. doi: 10.1111/j.1095-8339.1980.tb01663.x CrossRefGoogle Scholar
  13. 13.
    Lamdan NL, Attia Z, Moran N, Moshelion M (2012) The Arabidopsis-related halophyte Thellungiella halophila: boron tolerance via boron complexation with metabolites Plant Cell Environ 35:735–746. doi: 10.1111/j.1365-3040.2011.02447.x CrossRefGoogle Scholar
  14. 14.
    Peleg Z, Saranga Y, Fahima T, et al. (2010) Genetic control over silica deposition in wheat awns. Physiol Plant 140:10–20. doi: 10.1111/j.1399-3054.2010.01376.x CrossRefGoogle Scholar
  15. 15.
    Jones LHP, Milne AA, Wadham SM (1963) Studies of silica in the oat plant. II. Distribution of silica in the plant. Plant Soil 18:358–371. doi: 10.1007/BF01347235 CrossRefGoogle Scholar
  16. 16.
    Vidavsky N, Addadi S, Mahamid J, et al. (2013) Initial stages of calcium uptake and mineral deposition in sea urchin embryos. Proc Natl Acad Sci 201312833. doi: 10.1073/pnas.1312833110
  17. 17.
    Bokor B, Bokorová S, Ondoš S, et al. (2014) Ionome and expression level of Si transporter genes (Lsi1, Lsi2, and Lsi6) affected by Zn and Si interaction in maize. Environ Sci Pollut 22:6800–6811. doi: 10.1007/s11356-014-3876-6 CrossRefGoogle Scholar
  18. 18.
    Ma JF, Yamaji N (2008) Functions and transport of silicon in plants. Cell Mol Life Sci 65:3049–57. doi: 10.1007/s00018-008-7580-x CrossRefGoogle Scholar
  19. 19.
    Mitani N, Yamaji N, Ma JF (2009) Identification of maize silicon influx transporters. Plant Cell Physiol 50:5–12. doi: 10.1093/pcp/pcn110 CrossRefGoogle Scholar
  20. 20.
    Chiba Y, Mitani N, Yamaji N, Ma JF (2009) HvLsi1 is a silicon influx transporter in barley. Plant J Cell Mol Biol 57:810–818. doi: 10.1111/j.1365-313X.2008.03728.x CrossRefGoogle Scholar
  21. 21.
    Montpetit J, Vivancos J, Mitani-Ueno N, et al. (2012) Cloning, functional characterization and heterologous expression of TaLsi1, a wheat silicon transporter gene. Plant Mol Biol 79:35–46. doi: 10.1007/s11103-012-9892-3
  22. 22.
    Vaculík M, Landberg T, Greger M, et al. (2012) Silicon modifies root anatomy, and uptake and subcellular distribution of cadmium in young maize plants. Ann Bot 110:433–443. doi: 10.1093/aob/mcs039
  23. 23.
    Skinner RH, Nelson CJ (1995) Elongation of the grass leaf and its relationship to the phyllochron. Crop Sci 35:4. doi: 10.2135/cropsci1995.0011183X003500010002x
  24. 24.
    He C, Ma J, Wang L (2015) A hemicellulose-bound form of silicon with potential to improve the mechanical properties and regeneration of the cell wall of rice. New Phytol 206:1051–1062. doi: 10.1111/nph.13282 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Oshry Markovich
    • 1
  • Santosh Kumar
    • 1
  • Dikla Cohen
    • 1
  • Sefi Addadi
    • 2
  • Eyal Fridman
    • 3
  • Rivka Elbaum
    • 1
  1. 1.The Smith Institute of Plant Sciences and Genetics in AgricultureThe Hebrew University of JerusalemRehovotIsrael
  2. 2.B-nano Ltd.RehovotIsrael
  3. 3.Plant Sciences Institute, The Volcani Center Institute of Plant SciencesBet DaganIsrael

Personalised recommendations