Skip to main content
Log in

Thermo-Mechanical and Fracture Characterization of Uncoated, Single and Multilayer (SiN/CrN) Coating on Granite Powder Filled Metal Alloy Composites

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The purpose of this study was to investigate the thermo-mechanical and fracture behavior of uncoated and coated granite powder reinforced 1050 aluminum alloys composite for hydro-turbine blade material. Granite powder reinforced aluminum alloy was fabricated by the stir casting technique with four different weight percentages (0 wt.%, 2 wt.%, 4 wt.% and 6 wt.% granite powder). As hydro-turbine blades are exposed to water and other slurry hard materials, the proposed granite powder reinforced composites were initially coated with a single layered thermal coating i.e CrN on granite particulate filled 1050 aluminum alloy composites and then a multi-layered thermal coating i.e SiN/CrN on the same sets of alloy composites, which significantly improved the life span of the blade material simultaneously improving the properties. The hardness of the uncoated granite powder filled alloy composites increased with the increase in granite powder content from 32 HV to 61.2 HV respectively. Similarly, for both the single and multi-layered coating the hardness of the composites increases gradually with the increased in granite powder content from 87 HV to 123 HV (single layered coating) and 93 HV to 139 HV (multi-layered coating)) respectively. The impact strength of the uncoated particulate filled alloy composites increases from 41 J to 46 J (uncoated), 44 J to 53 J (single layered coating) and 45 J to 58 J (multi-layered coating) with the increased in granite powder content. The thermo-mechanical and fracture analysis were also performed and found improved in properties in the case of the multi-layered thermal coating on the granite powder filled alloy composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Toy C, Scott WD (1990) J Am Ceram Soc 73:97–101

    Article  CAS  Google Scholar 

  2. Kukshal V, Gangwar S, Patnaik A (2013) J Materials: Design and Applications. doi:10.1177/1464420713499513

  3. Fatoba OS, Popoola O, Popoola API (2014) Silicon. doi:10.1007/s12633-014-9199-x

  4. Kukshal V, Gangwar S, Patnaik A (2013) J Materials: Design and Applications. doi:10.1177/1464420713499514

  5. Okayasu M, Hitomi M, Yamazaki H (2009) J Eur Ceram Soc 29:2369–2378

    Article  CAS  Google Scholar 

  6. Gangwar S, Patnaik A, Singh T (2013) International Journal of Composite Materials 3:69–72

    Google Scholar 

  7. Anilkumar HC, Hebbar HS, Ravishankar KS (2011) International Journal of Mechanical and Materials Engineering 6:41–45

    Google Scholar 

  8. Bhanja S, Sengupta B (2002) Cem Concr Res 32:1391–1394

    Article  CAS  Google Scholar 

  9. Corinaldesi V, Moriconi G (2010) Waste Manag 30:655–663

    Article  CAS  Google Scholar 

  10. Pacheco-Torgal F, Ding Y, Jalali S (2012) Construct Build Mater 30:714–729

    Article  Google Scholar 

  11. Li G, Zhao X (2003) Cement Concr Compos 25:293–299

    Article  CAS  Google Scholar 

  12. Siddique R (2004) Cement Concr Compos 34:487–493

    Article  CAS  Google Scholar 

  13. Bhure R, Mahapatro A (2010) Silicon 2:117–151

    Article  CAS  Google Scholar 

  14. Romero J, Martinez E, Esteve J, Lousa A (2004) Surface Coating Technology 335:180–181

    Google Scholar 

  15. Chu X, Barnett SA (1995) J Appl Phys 77(9):4403–4412

    Article  CAS  Google Scholar 

  16. Schlogl M, Paulitsch J, Keckes J, Mayrhofer PH (2013) Thin Solid Films 531:113–118

    Article  CAS  Google Scholar 

  17. Cabrera G, Caicedo JC, Amaya C, Yate L, Saldana JM, Prieto P (2011) Mater Chem Phys 125:576–586

    Article  CAS  Google Scholar 

  18. Lee JW, Duh JG, Wang JH (2003) Surf Coat Technol 168:223–230

    Article  CAS  Google Scholar 

  19. Pettersson M, Berlind T, Schmidt S, Jacobson S, Hultman L, Persson C, Engqvist H (2013) J Mech Behav Biomed Mater 25:41–47

    Article  CAS  Google Scholar 

  20. Agarwal BD, Broutman IJ (1990) Analysis and performance of fiber composites, 2nd edn. Wiley, New York

    Google Scholar 

  21. Turk A, Durman M, Kayali ES (2007) J Mater Sci 42:8298–8305

    Article  CAS  Google Scholar 

  22. Chu S, Wu R (1999) Compos Sci Technol 59:157–162

    Article  CAS  Google Scholar 

  23. Abdullah Y, Razak Y, Daud RS, Harun M. (2009) IJMME 4:109–111

    Google Scholar 

  24. Qu Z, He R, Wei K, Pei Y, Fang D (2015) Cermaic International 41(3):5085–5092

    Article  CAS  Google Scholar 

  25. Park BG, Crosky AG, Hellier AK (2008) Composites: Part B 39:1270–1279

    Article  CAS  Google Scholar 

  26. Ergun E, Aslantas K, Tasgetiren S (2008) Mech Res Commun 35(4):209–218

    Article  Google Scholar 

  27. Kari S, Berger H, Ramos RR, Gabber U (2007) Compos Struct 77:223–231

    Article  Google Scholar 

  28. Liu FR, Chan KC, Tang CY (2008) Composite Science Technology 68:1943–1953

    Article  CAS  Google Scholar 

  29. Mummery PM, Derby B (1991) Mater. Sci. Eng. A 135:221–224

    Article  Google Scholar 

  30. Divecha AP, Fishman SG, Karmakar SD (1981) J Met 12:12–20

    Google Scholar 

  31. Bindumadhavan PN, Wah HK, Prabhakaran O (2001) Wear 248:112–120

    Article  CAS  Google Scholar 

  32. Patnaik A, Mamatha TG, Biswas S, Kumar P (2012) Mater Des 36:511–521

    Article  CAS  Google Scholar 

  33. Singla M, Dwivedi D, Singh L, Chawla V (2009) J Miner Mater Charact Eng 8(6):455–467

    Google Scholar 

  34. Papakyriacou M, Mayer HR, Tschegg-Stanzl SE, Groschl M (1995) Fatigue Fracture Engineering Material structure 18(4):477–487

    Article  CAS  Google Scholar 

  35. Levin M, Karlsson B (1991) Material Science and Technology 7:596–607

    Article  CAS  Google Scholar 

  36. Kumai S, Yoshida K, Higo Y, Nunomura S (1996) Acta Materials 44(6):2249–2257

    Article  CAS  Google Scholar 

  37. Lee CM, Chu JP, Chang WZ, Lee JW, Jang JSC, Liaw PK (2014) Thin Solid Films 561:33–37

    Article  CAS  Google Scholar 

  38. Chan RN, Stoner BR, Thompson JY, Scattergood RO, Piascik JR (2013) Dent Mater 29:881–887

    Article  CAS  Google Scholar 

  39. Zhang JM, Perez RJ, Wong CR, Lavernia EJ (1994) Mater Sci Eng 13:325–389

    Article  Google Scholar 

  40. Gupta MK (1990) Thermochim Acta 166(15):157–167

    Article  CAS  Google Scholar 

  41. Cox J, Luong DD, Shunmugasamy VC, Gupta N, Strbik OM, Cho K (2014) Metals 4:530–548

    Article  Google Scholar 

  42. Licitra L, Luong DD, Strbik OM, Gupta N (2015) Mater Des 66:504–515

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amar Patnaik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gautam, V., Patnaik, A. & Bhat, I.K. Thermo-Mechanical and Fracture Characterization of Uncoated, Single and Multilayer (SiN/CrN) Coating on Granite Powder Filled Metal Alloy Composites. Silicon 8, 133–143 (2016). https://doi.org/10.1007/s12633-015-9318-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-015-9318-3

Keywords

Navigation