Skip to main content
Log in

5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin Covalently Bound to Nano-silica Surface: Preparation, Characterization and Chemosensor Application to Detect TNT

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Mesoporous silica is a very suitable carrier for preparation of sensors for detection of explosive compounds with high selectivity and rapid responsiveness by incorporating chemical sensing units into silica films. Three types of porphyrin-doped silica with mesoporous and amorphous structures were prepared. 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin was synthesized in two steps starting from p-methoxycarbonylbenzaldehyde. 5,10,15,20-tetrakis(4-(methoxycarbonyl) phenyl) porphyrin (1a) was hydrolyzed with trifluoroacetic acid (TFA) to produce 5,10,15,20-tetrakis(4-carboxyphenyl) porphyrin (1b) in 100 % yield. Different kinds of silica such as Hexagonal SBA-15 (SBA-15(Hex)), Spherical SBA-15 (SBA-15(Sp)) and commercial SiO2(SiO2(Ald)) were functionalized using 3-aminopropyltriethoxysilane (3-APS). Porphyrin with carboxylic substituent was reacted with N-hydroxysuccinimide (NHS) and N, N'-dicyclohexylcarbodiimide (DCC) to produce 5-[4-(succinimidyloxycarbonyl)phenyl]-10,15,20-tri(4-carboxyphenyl)porphyrin (H 2 SPTCPP) and grafted to the surface of modified silica to obtain porphyrin-doped silica materials. Results suggest that the synthetic route achieves a high content of porphyrin incorporated to the support. The percentage of porphyrin incorporated to the support, which is higher in the case of SBA-15(Sp) with higher surface area and containing a larger number of silanol groups available for grafting, is directly related to the catalytic activity. Time-dependent fluorescence quenching of porphyrin-doped silica films was studied for three different mesostructures and it showed a rapid quenching upon exposure to a trace amount of TNT vapor due to the high surface area and highly ordered structure of silica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Johanson U, Marandi M, Sammelselg V, Tamm J (2005) J Electroanal Chem 575:267–273

    Article  CAS  Google Scholar 

  2. Ghiaci M, Molaie F, Sedaghat ME, Dorostkar N (2010) Catal Comm 11:694–699

    Article  CAS  Google Scholar 

  3. Zhang L, Sun T, Ying JY (1999) Chem Commun 1103–1104. doi:10.1039/A900629J

  4. Gao B, Wang R, Zhang Y (2009) J App Polym Sci 112:2764–2772

    Article  CAS  Google Scholar 

  5. Anzenbacher P, Král V, Jursíková K, Günterová J, Kasal A (1997) J Mol Catal A 118:63–68

    Article  CAS  Google Scholar 

  6. Yu XQ, Huang JS, Yu WY, Che CM (2000) J Am Chem Soc 122:5337–5342

    Article  CAS  Google Scholar 

  7. Sacco HC, Iamamoto Y, Lindsay Smith JR (2001) J Chem Soc Perkin Trans 2:181

    Article  Google Scholar 

  8. Neys PEF, Vankelecom IFJ, Parton RF, Cenlemans E, Dehaen W, L’abbé G, Jacobs PA (1998) J Mol Catal A 134:209–214

    Article  CAS  Google Scholar 

  9. Sacco HC, Ciuffi KJ, Biazzotto JC, Zuccki MR, Leite CAP, Nascimento OR, Serra OA, Iamamoto Y (2000) J Non-Cryst Solids 273:150–158

    Article  CAS  Google Scholar 

  10. Fa HB, Zhao L, Wang XQ, Yu JH, Huang YB, Yang M, Wang DJ (2006) Eur J Inorg Chem 21:4355–4361

    Article  Google Scholar 

  11. Moghadam M, Tangestaninejad S, Habibi MH, Mirkhani V (2004) J Mol Catal A 274:217–223

    Article  Google Scholar 

  12. Mukherjee M, Ray AR (2007) J Mol Catal A 266:207–214

    Article  CAS  Google Scholar 

  13. Naik R, Joshi P, Umbarkar S, Deshpande RK (2005) Catal Commun 6:125–129

    Article  CAS  Google Scholar 

  14. Fuchter MJ, Hoffman BM, Barrett AGM (2006) J Org Chem 71:724–729

    Article  CAS  Google Scholar 

  15. Yamada T, Zhou H, Uchida H, Honma I, Katsube T (2004) J Phys Chem B 108:13341–13346

    Article  CAS  Google Scholar 

  16. Fan H, Lu Y, Stump A, Reed ST, Baer T, Schunk R, Perez-Luna V, Lopez GP, Brinker J (2000) Nature 405:56–60

    Article  CAS  Google Scholar 

  17. Hüsing N, Schubert U (1998) Angew Chem Int Ed 37:22–45

    Article  Google Scholar 

  18. Lee SK, Okura I (1997) Analyst 22:81–84

    Article  Google Scholar 

  19. Tao S, Li G (2007) Colloid Polym Sci 285:721

    Article  CAS  Google Scholar 

  20. Liu Y, Mills RC, Boncella JM, Schanze KS (2001) Langmuir 17:7452

    Article  CAS  Google Scholar 

  21. Lan EH, Dunn B, Zink JI (2000) Chem Mater 12:1874–1878

    Article  CAS  Google Scholar 

  22. Yang JS, Swager TM (1998) J Am Chem Soc 120:11864–11873

    Article  CAS  Google Scholar 

  23. Mcquade DT, Pullen AE, Swager TM (2000) Chem Rev 100:2537–2574

    Article  CAS  Google Scholar 

  24. Sohn H, Sailor MJ, Magda D, Trogler WC (2003) J Am Chem Soc 125:3821–3830

    Article  CAS  Google Scholar 

  25. Rouhi AM (2005) Chem Eng News 83:8

    CAS  Google Scholar 

  26. Chang CP, Chao CY, Huang JH, Hsu CS, Lin MS, Hsieh BR, Su AC (2004) Synth Met 144:297–301

    Article  CAS  Google Scholar 

  27. Yang JS, Swager TM (1998) J Am Chem Soc 120:5321–5322

    Article  CAS  Google Scholar 

  28. Adler AD, Longo FR, Finarelli JD, Goldmacher J, Assour J, Korsakoff L (1967) J Org Chem 32:476

    Article  CAS  Google Scholar 

  29. Mohamadnia Z, Ahmadi E, Nekoomanesh M, Ramazani A, Salehi Mobarakeh H (2010) Polym Int 59:945–953

    Article  CAS  Google Scholar 

  30. Zhao D, Huo Q, Feng J, Chmelka BF, Stucky GD (1998) J Am Chem Soc 120:6024–6036

    Article  CAS  Google Scholar 

  31. Ma Y, Qi L, Ma J, Wu Y, Liu O, Cheng H (2003) Colloids Surf A Physicochem Eng Asp 229:1–8

    Article  CAS  Google Scholar 

  32. Zheng S, Gao L, Guo J (2000) J Solid-State Chem 152:447–452

    Article  CAS  Google Scholar 

  33. Tao S, Shi Z, Li G, Li P (2006) Chem Phys Chem 7:1902–1905

    CAS  Google Scholar 

  34. Rose A, Zhu Z, Madigan CF, Swager TM, Bulovic V (2005) Nature 434:876–879

    Article  CAS  Google Scholar 

  35. Toal SJ, Trogler WC (2006) J Mater Chem 16:2871–2873

    Article  CAS  Google Scholar 

  36. Tao S, Li G, Zhu H (2006) J Mater Chem 16:4521–4528

    Article  CAS  Google Scholar 

  37. Handbook of physical properties of organic chemicals In: Howard PH, Meylan WM (eds). CRC Press, Lewis Publishers (1997)

  38. Luts T, Suprum W, Hofmann D, Klepel O, Papp H (2007) J Mol Catal A: Chem 261:16–23

    Article  CAS  Google Scholar 

  39. Qu R, Wang M, Sun C, Zhang Y, Ji C, Chen H (2008) Appl Surf Sci 255:3361–3370

    Article  CAS  Google Scholar 

  40. Fagadar-Cosma E, Enache C, Dascalu D, Fagadar-Cosma G, Gavrila R (2008) Optoelectron Adv Mater Rapid Commun 7:437–441

    Google Scholar 

  41. Innocenzi P, Abdirashid MO, Guglielmi M (1994) J Sol–Gel Sci Technol 3:47–55

    Article  CAS  Google Scholar 

  42. Al-Oweini R, El-Rassy H (2009). J Mol Struct 919:140–145

    Article  CAS  Google Scholar 

  43. Hajji P, David L, Gerard JF, Pascault JP, Vigier GJ (1999) Polym Sci Ser B 37:3172–3187

    Article  CAS  Google Scholar 

  44. Cherian S, Wamser CC (2000) J Phys Chem B 104:3624–3629

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebrahim Ahmadi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 101 KB)

(DOC 26.0 KB)

(DOC 372 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadi, E., Ramazani, A., Hamdi, Z. et al. 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin Covalently Bound to Nano-silica Surface: Preparation, Characterization and Chemosensor Application to Detect TNT. Silicon 7, 323–332 (2015). https://doi.org/10.1007/s12633-015-9304-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-015-9304-9

Keywords

Navigation