Skip to main content
Log in

Circuit Model of Different Quantum Dot Based Field Effect Transistors

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

A quantum dot is a semiconductor nanostructure that confines the motion of conduction band electrons, valence band holes, or excitons (bound pairs of conduction band electrons and valence band holes) in all three spatial directions. The confinement can be due to electrostatic potentials (generated by external electrodes, doping, strain, impurities), the presence of an interface between different semiconductor materials (e.g. in core-shell nanocrystal systems), the presence of the semiconductor surface (e.g. semiconductor nanocrystal), or a combination of these. The presence of quantum dots in the metal-oxide-semiconductor field effect transistor (FET) structure produces different characteristics of the FET. Based on different characteristics of the FET, different multi-valued logic can be implemented using QD based FETs. The presence of quantum dots in the gate region of a FET can generate three states (QDGFET) or make the FET act like a nonvolatile memory (QDNVM), whereas a quantum dot in the channel of the FET (QDCFET) produces four states in the transfer characteristics. This paper presents the development of circuit models for different types of FET having QDs in their different regions such as in the gate region (QDGFET/QDNVM) or in the gate region as well as in the channel region (QDG-QDCFET).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Toriumi A, Koga J et al (2000) FED Journal 11 Supplement: 4–7

  2. Huang R et al (2009) Sci China Ser F: Inf Sci 52:1491–1533

    Article  Google Scholar 

  3. Robertson J (2000) J Vac Sci Technol B 18:1785–1791

    Article  CAS  Google Scholar 

  4. Yeo Y-C, Pushkar R et al (2002) IEEE Electron Device Lett 23:342–344

    Article  CAS  Google Scholar 

  5. Federico C, Richard AK (1985) J Appl Phys 58:1366

    Article  Google Scholar 

  6. Waho T (1995) In: Proceedings of IEEE International Symposium on Multiple-Valued Logic, pp 0130

  7. Tetsuya U, Mazumder P (1999) IEICE Trans Electron, E82-C 9:1630–1637

    Google Scholar 

  8. Forster A (1993) Adv Solid State Phys 33:37–62

    Article  Google Scholar 

  9. http://www-device.eecs.berkeley.edu/bsim/

  10. Karmakar S, Chandy JA et al (2011) Int J High Speed Electron Syst 20:653

    Article  CAS  Google Scholar 

  11. Robert C, Justin B et al (2005) Microelectron Eng 80

  12. Karmakar S, Chandy JA et al (2013) IEEE Trans Very Large Scale Integr Syst (TVLSI) 21:793–806

    Article  Google Scholar 

  13. Thomas PB, Chattopadhyay D et al (2002) Chem Mater 14:1030

    Article  Google Scholar 

  14. Jain F, Papadimitrakopoulos F (2008) US Patent 7 368:370

    Google Scholar 

  15. Jain FC, Heller E et al (2007) In: Proceedings of International Semiconductor Device Research Symposium

  16. Chuang S, Holonyak N (2002) Appl Phys Lett 80:1270

  17. Hasaneen ES, Heller E et al (2004) Solid-State Electron 48:2055

  18. Tiwari S, Rana F et al (1995) In: Proceedings of IEDM. pp 521

  19. Karmakar S, Suarez E et al (2011) J Electron Mater 40:1749–1756

  20. Karmakar S, Chandy JA et al (2012) J Electron Mater 41:2184–2192

    Article  CAS  Google Scholar 

  21. Karmakar S, Gogna M et al (2012) Electron Lett 48:1556–1557

    Article  Google Scholar 

  22. Karmakar S, Suresh AP et al (2009) In: Proceedings of International Semiconductor Device Research Symposium

  23. Jain F, Karmakar S et al (2012) J Electron Mater 41:2775–2784

    Article  CAS  Google Scholar 

  24. Karmakar S (2013) Int. Journal. Elec. doi:10.1080/00207217.2013.854549

  25. Karmakar S, Chandy JA et al (2013) J. Sign Process Syst. doi:10.1007/s11265-013-0789-4

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Supriya Karmakar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karmakar, S., Jain, F.C. Circuit Model of Different Quantum Dot Based Field Effect Transistors. Silicon 7, 15–26 (2015). https://doi.org/10.1007/s12633-014-9252-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-014-9252-9

Keywords

Navigation