Skip to main content
Log in

Study of Phosphorus Doped Micro/Nano Crystalline Silicon Films Deposited by Filtered Cathodic Vacuum Arc Technique

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Phosphorus doped micro/nano crystalline silicon thin films have been deposited by the filtered cathodic vacuum arc technique at different substrate temperatures (Ts) ranging from room temperature (RT) to 350 C. The films have been characterized by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy, secondary ion mass spectroscopy, dark conductivity ( σ D), activation energy ( ΔE) and optical band gap (E g). The XRD patterns show that the RT grown film is amorphous in nature but high Ts (225 and 350 C) deposited films have a crystalline structure with (111) and (220) crystal orientation. The crystallite size of the higher Ts grown silicon films evaluated was between 17 to 31 nm. Raman spectra reveal the amorphous nature of the film deposited at RT whereas higher Ts deposited films show a higher crystalline nature. The crystalline volume fraction of the silicon film deposited at higher Ts was estimated as 65.7 % and 74.4 %. The values of σ D, ΔE and E g of the silicon films deposited at different Ts were found to be in the range of 8.84 x 10 −4− 0.98 ohm −1 cm −1, 0.06 - 0.31 eV and 1.31-1.93 eV, respectively. A n-type nc-Si/p-type c-Si heterojunction diode was fabricated which showed the diode ideality factor between 1.1 to 1.5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sriraman S, Agrawal S, Aydil ES, Maroudas D (2002) Nature 418:62–65

    Article  CAS  Google Scholar 

  2. Biaggi-Labiosa A, Solá F, Resto O, Fonseca LF, González-Berríos A, Jesús JD, Morell G (2008) Nanotechnol 19:225202

    Article  CAS  Google Scholar 

  3. Song DY, Inns D, Straub A, Terry ML, Campbell P, Aberle AG (2006) Thin Solid Films 513:356–363

    Article  CAS  Google Scholar 

  4. Shah AV, Meier J, Sauvain EV, Wyrsch N, Kroll U, Droz C, Graf U (2003) Solar Energy Mater Sol Cells 78:469–491

    Article  CAS  Google Scholar 

  5. Paul S (2003) Solar Energy Mater Sol Cells 78:349–367

    Article  Google Scholar 

  6. Yang HD, Wu CY, Huang JK, Ding RQ, Zhao Y, Geng XH, Xiong SZ (2005) Thin Solid Films 472:125–129

    Article  CAS  Google Scholar 

  7. Song DY, Cho EC, Conibeer G, Flynn C, Huang YD, Green MA (2008) Solar Energy Mater Sol Cells 92:474–481

    Article  CAS  Google Scholar 

  8. Yan B, Jiang CS, Teplin CW, Moutinho HR, Al-Jassim MM, Yang J, Guha S (2007) J Appl Phys 101:033712–033717

    Article  Google Scholar 

  9. Waman VS, Kamble MM, Ghosh SS, Mayabadi A, Sathe VG, Amalnekar DP, Pathan HM, Jadkar SR (2012) J Nanosci Nanotechnol 12:8459–8466

    Article  CAS  Google Scholar 

  10. Choi WC, Kim CK, Kim EK, Shim CM, Jung D, Park CY (2000) J Korean Phys Soc 36:23–28

    CAS  Google Scholar 

  11. Robertson J (2002) Mater Sci Eng R 37:129–282

    Article  Google Scholar 

  12. Fallon PJ, Veerasamy VS, Davis CA., Robertson J, Amaratunga GAJ, Milne WI, Koskinen J (1993) Phys Rev B 48:4777–4782

    Article  CAS  Google Scholar 

  13. Martin PJ (1995) A1.4 cathodic arc deposition, handbook of thin film process technology. IOP Publishing Ltd

  14. Panwar OS, Aparna Y, Shivaprasad SM, Khan MA, Satyanarayana BS, Bhattacharyya R (2004) Appl Surf Sci 221:392–401

    Article  CAS  Google Scholar 

  15. Panwar OS, Deb B, Satyanarayana BS, Khan MA, Bhattacharyya R, Pal AK (2005) Thin Solid Films 472:180–188

    Article  CAS  Google Scholar 

  16. Panwar OS, Khan MA, Bhagavanarayana G, Dixit PN, Sushil K, Rauthan CMS (2008) Indian J Pure Appl Phys 46:797–805

    CAS  Google Scholar 

  17. Panwar OS, Khan MA, Bhattacharjee B, Pal AK, Satyanarayana BS, Dixit PN, Bhattacharyya R, Khan MY (2006) Thin Solid Films 515:1597–1602

    Article  CAS  Google Scholar 

  18. Panwar OS, Khan MA, Satyanarayana BS, Kumar S, Ishpal (2010) Appl Surf Sci 256:4383–4390

    Article  CAS  Google Scholar 

  19. Boxman RL, Goldsmith S, Shalom AB, Kaplan L, Arbilly D, Gidalevich E, Zhitomirsky V, Ishaya A, Keidar M, Beilis II (1995) IEEE Trans Plasma Sci 23:939–944

    Article  CAS  Google Scholar 

  20. Bilek MMM, Milne WI (1996) Thin Solid Films 290-291:299–304

    Article  CAS  Google Scholar 

  21. Han J, Tan M, Zhu J, Meng S, Wang B, Mu S, Cao D (2007) Appl Phys Lett 90:083508–083510

    Article  Google Scholar 

  22. Sakuma Y, Liu H, Shirai H, Moriya Y, Ueyama H (2001) Thin Solid Films 386:256–260

    Article  Google Scholar 

  23. Dalal VL, Graves J, Leib J (2004) Appl Phys Lett 85:1413–1414

    Article  CAS  Google Scholar 

  24. Bruhne K, Schuberk MB, Kohler C, Werner JH (2001) Thin Solid Films 395:163–168

    Article  CAS  Google Scholar 

  25. Baroughi MF, Sivoththaman S (2006) Semicond Sci Technol 21:979–986

    Article  Google Scholar 

  26. Panwar OS, Mukherjee C, Bhattacharyya R (1999) Solar Energy Mater Sol Cells 57:373–391

  27. Dixit PN, Panwar OS, Satyanarayana BS, Bhattacharyya R (1995) Solar Energy Mater Sol Cells 37:143–157

    Article  CAS  Google Scholar 

  28. Jeong C, Boo S, Kim TW, Choi BH, Kim HS, Chang DR, Lee JH, Kamisako K (2008) J Nanosci Nanotechnol 8:5521–5526

    Article  CAS  Google Scholar 

  29. Alpuim P, Chu V, Conde JP (2001) J Vac Sci Technol A 19:2328–2334

    Article  CAS  Google Scholar 

  30. Jiang CS, Yan B, Yan Y, Teplin CW, Reedy R (2008) J Appl Phys 103:063515–063520

    Article  Google Scholar 

  31. Gope J, Kumar S, Parashar A, Dixit PN, Rauthan CMS, Panwar OS, Patel DN, Agarwal SC (2009) J Non- Cryst Solids 355:2228–2232

  32. Saha SC, Barua AK, Ray S (1993) J Appl Phys 74:5561–5568

    Article  CAS  Google Scholar 

  33. Gope J, Kumar S, Singh S, Rauthan CMS, Srivastava PC (2012) Silicon 4:127–135

  34. Cheng Q, Xu S, Ostrikov K (2009) Nanotechnol 20:215606–215613

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. S. Panwar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kesarwani, A.K., Panwar, O.S., Tripathi, R.K. et al. Study of Phosphorus Doped Micro/Nano Crystalline Silicon Films Deposited by Filtered Cathodic Vacuum Arc Technique. Silicon 9, 473–481 (2017). https://doi.org/10.1007/s12633-014-9237-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-014-9237-8

Keywords

Navigation