Skip to main content
Log in

Oligosiloxanes with Silatrane Moieties for Use in Lithium-ion Conductive Matrices

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Solvent-free polymer electrolytes are critical for improving the performance of electrochemical devices. With the aim of developing a new silicon-based polymer electrolyte that does not contain poly(ethylene oxide) or ionic-liquid moieties, we present the synthesis, spectroscopic, thermogravimetric, and electrochemical characterization of a polymer combining flexible polysiloxanes with polar silatrane moieties at their chain ends or at their pendant chain ends prepared via hydrosilylation. The polymers obtained readily dissolve lithium bis (trifluoromethylsulfonyl)amide (LiTFSA), whereas lithium trifluoromethylsulfonate (LiOTf) and lithium bis(oxalato)borate (LiBOB) exhibit lower solubility. The polysiloxane with silatrane chain ends show an ionic conductivity of about 10 −6 S cm −1 at ambient temperature, a wide electrochemical stability of 5.4 V, a high lithium-ion transference number of 0.70, and good long-time thermal stability up to 150 °C. The pendant-type polymers show lower ionic conductivity because of their high glass transition temperature. Despite their low conductivity, the solvent-free polymer/LiTFSA complexes might find application as binder materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K, Mitsui A (2011) A lithium superionic conductor. Nat Mater 10:682–686

    Article  CAS  Google Scholar 

  2. Tatsumisago M, Hayashi A (2012) Superionic glasses and glass-ceramics in the Li 2S-P 2 S 5 system for all-solid-state lithium secondary batteries. Solid State Ionics 225:342–345

    Article  CAS  Google Scholar 

  3. Yoshida K, Nakamura M, Kazue Y, Tachikawa N, Tsuzuki S, Seki S, Dokko K, Watanabe M (2011) Oxidative-stability enhancement and charge transport mechanism in glyme-lithium salt equimolar complexes. J Am Chem Soc 133:13121–13129

    Article  CAS  Google Scholar 

  4. Yoshida K, Tsuchiya M, Tachikawa N, Dokko K, Watanabe M (2012) Correlation between battery performance and lithium ion diffusion in glyme-lithium bis(trifluoromethanesulfonyl)amide equimolar complexes. J Electrochem Soc 159:A1005–A1012

    Article  CAS  Google Scholar 

  5. Rossi RAA, West R (2009) Silicon-containing liquid polymer electrolytes for application in lithium ion batteries. Polym Int 58:267–272

    Article  CAS  Google Scholar 

  6. Fish D, Khan IM, Smid J (1986) Conductivity of silid complexes of lithium perchlorate with poly{[ ω-methoxyhexa (oxyethylene)ethoxy]methylsiloxane}. Makromol Chem Rapid Commun 7:115–120

    Article  CAS  Google Scholar 

  7. Spindler R, Shriver DF (1988) Investigations of a siloxane-based polymer electrolyte employing 13C, 29Si, 7Li and 23Na solid state NMR spectroscopy. J Am Chem Soc 110:3036–3043

    Article  CAS  Google Scholar 

  8. Zhou G-B, Khan IM, Smid J (1993) Solvent-free cation-conducting polysiloxane electrolytes with pendant oligo(oxyethylene) and sulfonate groups. Macromolecules 26:2202–2208

    Article  CAS  Google Scholar 

  9. Siska DP, Shriver DF (2001) Li + conductivity of polysiloxane-trifluoromethylsulfonamide polyelectrolytes. Chem Mater 13:4698–4700

    Article  CAS  Google Scholar 

  10. Amine K, Wang Q, Vissers DR, Zhang Z, Rossi NAA, West R (2006) Novel silane compounds as electrolyte solvents for Li-ion batteries. Electrochem Commun 8:429–433

    Article  CAS  Google Scholar 

  11. Walkowiak M, Schroeder G, Gierczyk B, Waszak D, Osińska M (2007) New lithium ion conducting polymer electrolytes based on polysiloxane grafted with Si-tripodand centers. Electrochem Commun 9:1558–1562

    Article  CAS  Google Scholar 

  12. Doyle M, Fuller TF, Newman J (1994) The importance of the lithium ion transference number in lithium/polymer cells. Electrochim Acta 39:2073–2081

    Article  CAS  Google Scholar 

  13. Shodai T, Owens BB, Ohtsuka H, Yamaki J-I. (1994) Thermal stability of the polymer electrolyte (PEO) 8LiCF 3 SO 3. J Electrochem Soc 141:2978–2981

    Article  CAS  Google Scholar 

  14. Zhu Z, Einset AG, Yang C-Y, Chen W-X, Wnek GE (1994) Synthesis of polysiloxanes bearing cyclic carbonate side chains. Dielectric properties and ionic conductivities of lithium triflate complexes. Macromolecules 27:4076–4079

    Article  CAS  Google Scholar 

  15. Lee IJ, Song GS, Lee WS, Suh DH (2003) A new class of solid polymer electrolyte: synthesis and ionic conductivity of novel polysiloxane containing allyl cyanide groups. J Power Sources 114:320–329

    Article  CAS  Google Scholar 

  16. Zhang Z, Lyons LJ, West R, Amine K, West R (2005) Synthesis and ionic conductivity of mixed substituted polysiloxanes with oligoethyleneoxy and cyclic carbonated substituents. Silicon Chemistry 3:259–266

    Article  Google Scholar 

  17. Rossi NAA, Wang Q, Amine K, West R (2010) Silicon-containing cabonates- Synthesis, characterization, and additive effects for silicon-based polymer electrolytes. Silicon 2:201–208

    Article  CAS  Google Scholar 

  18. Liang S, Choi UH, Liu W, Runt J, Colby RH (2012) Synthesis and lithium ion conduction of polysiloxane single-ion conductors containing novel weak-binding borates. Chem Mater 24:2316–2323

    Article  CAS  Google Scholar 

  19. Mizumo T, Fujita R, Ohshita J (2011) Lithium ion conduction in silatrane matrices. Chem Lett 40:798–800

    Article  CAS  Google Scholar 

  20. Frye CL, Vogel GE, Hall JA (1961) Triptych-siloxazolidines: pentacoordinate bridgehead silanes resulting from transannular interaction of nitrogen and silicon. J Am Chem Soc 83:996–997

    Article  CAS  Google Scholar 

  21. Frye CL, Vincent GA, Finzel WA (1971) Pentacoordinate silicon compounds. V. Novel silatrane chemistry. J Am Chem Soc 93: 6805–6811

    Article  CAS  Google Scholar 

  22. Voronkov MG, Dyakov VM, Kirpichenko SV (1982) Silatranes. J Organomet Chem 233:1–147

    Article  CAS  Google Scholar 

  23. Puri JK, Singh R, Chahal VK (2011) Silatranes: a review on their synthesis, structure, reactivity and applications. Chem Soc Rev 40:1791–1840

    Article  CAS  Google Scholar 

  24. Laine RM, Treadwell DR, Mueller BL, Bickmore CR, Waldner KF, Hinklin TR (1996) Processable aluminosilicate alkoxide precursors from metal oxides and hydroxides. The oxide one-pot synthesis process. Mater Chem Commun 6:1441–1443

    Article  CAS  Google Scholar 

  25. Cheng H, Laine RM (1999) Simple, low-cost synthetic route to potentially polymerizable silatranes. New J Chem 23:1181–1186

    Article  CAS  Google Scholar 

  26. Armand MB, Bruce PG, Forsyth M, Scrosati B, Wieczorek W (2011) Polymer electrolytes In: Bruce DW, O’Hare D, Walton RI (eds) Energy materials, Wiley, Chichester pp 1–31

  27. Mizumo T, Kajihara T, Yamada T, Ohshita J (2013) Preparation and utilization of poly(methacryloylsilatrane) as a saltdissociation enhancer in PEO-based polymer electrolytes. Polym Adv Technol 24:705–714

  28. Evans J, Vincent CA, Bruce PG (1987) Electrochemical measurement of transference numbers in polymer electrolytes. Polymer 28:2324–2328

    Article  CAS  Google Scholar 

  29. Egorov YP, Voronkov MG, Lutsenko TB, Zelchan GI (1966) Infrared absorption spectra of silatranes. Khim Geterotsikl Soedin 2:24–33

    Google Scholar 

  30. Cai D, Neyer A, Kuckuk R, Heise HM (2010) Raman, mid-infrared, near-infrared and ultraviolet-visible spectroscopy of PDMS silicone rubber for characterization of polymer optical waveguide materials. J Mol Struct 976:274–281

    Article  CAS  Google Scholar 

  31. Smith BC (1998) Infrared spectral interpretation. CRC Press, Boca Raton

    Google Scholar 

  32. Imura K (2012) Non-aqueous electrolytes containing fluorine. Molten Salts 55:99–102

    CAS  Google Scholar 

  33. Barthel J, Gores HJ, Neueder R, Schmid A (1999) Electrolyte solutions for technology-new aspects and approaches. Pure Appl Chem 71:1705–1715

    Article  CAS  Google Scholar 

  34. Markusson H, Johansson P, Jacobsson P (2005) Electrochemical stability and lithium ion-anion interactions of orthoborate anions (BOB, MOB, BMB), and presentation of novel anion: tris-oxalato-phosphate. Electrochem Solid-State Lett 8:A215–A218

    Article  CAS  Google Scholar 

  35. Johansson P, Jacobsson P (2001) New lithium salts on the computer: fiction or fact?. Electrochim Acta 46:1545–1552

    Article  CAS  Google Scholar 

  36. Torell LM, Jacobsson P, Sidebottom D, Petersen G (1992) The importance of ion-polymer crosslinks in polymer electrolytes. Solid State Ionics 53–56:1037–1043

    Article  Google Scholar 

  37. Sylla S, Sanchez JY, Armand M (1992) Electrochemical study of linear and crosslinked POE-based polymer electrolytes. Electrochim Acta 37:1699–1701

    Article  CAS  Google Scholar 

  38. Ohno H (2008) Physical properties of ionic liquids for electrochemical applications In: Endres F, Abbott AP, MacFarlane DR (eds) Electrodeposition from ionic liquids, Wiley, Weinheim, pp 47–82

  39. Takekawa T (2010) Approach and task of ionic liquid electrolyte for fuel cell under high temperature and non-humidification. Molten Salts 53:110–114

    CAS  Google Scholar 

  40. West R, Whatley LS, Lake KJ (1961) Hydrogen bonding studies. V. The relative basicities of ethers, alkoxysilanes and siloxanes and the nature of the silicon-oxygen bond. J Am Chem Soc 83:761–764

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomonobu Mizumo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mizumo, T., Nakashima, M. & Ohshita, J. Oligosiloxanes with Silatrane Moieties for Use in Lithium-ion Conductive Matrices. Silicon 9, 85–96 (2017). https://doi.org/10.1007/s12633-014-9187-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-014-9187-1

Keywords

Navigation