Injection Molding of Superhydrophobic Liquid Silicone Rubber Surfaces

Abstract

Superhydrophobic functional surfaces have numerous applications. Their self-cleaning ability and the associated savings in energy, water and cleaning agents enhance the sustainability of products and often make active cleaning of these surfaces unnecessary. Silicone surfaces, which aim to imitate the surface of the lotus plant, were prepared using a microstructured injection mold. The conical micro structures were varied in diameter and height ranging from 5 to 20 \(\upmu \)m as were the process parameters within the framework of a statistical experimental plan. The molded structures were evaluated by scanning electron microscopy and confocal laser microscopy, and the resulting contact angle was measured. In contrast to the structural dimensions, the process parameters had only a minor impact on the contact angle. Smaller base diameters of the individual cones and the resulting smaller distances between the cone tips produced larger contact angles. Larger aspect ratios and increasing heights at equal intervals of the individual structures led to smaller standard deviations from the mean measured contact angles. Subsequent mechanical load tests showed the resistance of the functionalization. Our results reveal that it is possible to produce robust superhydrophobic surfaces in a single-step liquid silicone injection molding process.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Darwin C (1859) On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. John Murray, London

    Google Scholar 

  2. 2.

    NN (2012) Biomimetics - Conception and strategy, Differences between biomimetic and conventional methods/products. VDI-Gesellschaft Technologies of Life Sciences, Düsseldorf

  3. 3.

    Nachtigall W (2010) Bionik als Wissenschaft, Erkennen—Abstrahieren—Umsetzen. Springer-Verlag, Berlin

    Google Scholar 

  4. 4.

    Bonser RHC (2006) Patented biologically-inspired technological innovations: a twenty year view. J Bionic Eng 3(1):39–41

    Article  Google Scholar 

  5. 5.

    Schäfer S, Briegert B, Menzel S (2005) Bionik im Bauwesen. In: Rossmann T, Tropea C (eds) Bionik—Aktuelle Forschungsergebnisse in Natur, Ingenieur- und Geisteswissenschaft. Springer-Verlag, Berlin

    Google Scholar 

  6. 6.

    Speck T (2011) Verpacken, Auspacken und Schützen nach dem Vorbild der Natur: Was man von der Biologie für technische Verpackungen lernen kann. VDI annual injection molding conference. Baden-Baden

  7. 7.

    Solga A, Cerman Z, Striffler BF, Spaeth M, Barthlott W (2007) The dream of staying clean: lotus and biomimetic surfaces. Bioinspiration Biomim 2(4):126–134

    Article  Google Scholar 

  8. 8.

    Koch K, Barthlott W (2009) Superhydrophobic and superhydrophilic plant surfaces: an inspiration for biomimetic materials. Phil Trans Roy Soc 367(1893):1487–1509

    CAS  Article  Google Scholar 

  9. 9.

    NN (2011) Biomimetics - Functional bionic surfaces. VDI-Gesellschaft Technologies of Life Sciences, Düsseldorf

  10. 10.

    Barthlott W (1990) Scanning electron microscopy of the epidermal surface in plants. In: Claugher D (ed) Scanning electron microscopy in taxonomy and functional morphology. Clarendon Press, Oxford, pp 69–94

    Google Scholar 

  11. 11.

    Cerman Z (2007) Superhydrophobie und Selbstreinigung: Wirkungsweise, Effizienz und Grenzen bei der Abwehr von Mikroorganismen. Rheinische Friedrich-Wilhelms-Universität Bonn, Dissertation

  12. 12.

    Nachtigall W, Blüchel K (2002) Das große Buch der Bionik—Neue Technologien nach dem Vorbild der Natur. Deutsche Verlags-Anstalt, Munic

  13. 13.

    Dallmann S (2011) Reinigung superhydrophober Oberflächen. Technische Universität Dortmund, Dissertation

  14. 14.

    Klaiber F (2010) Entwicklung einer Anlagen- und Prozesstechnik für die Herstellung superhydrophober Oberflächen im Spritzgießverfahren. RWTH Aachen, Dissertation, ISBN: 3-86130-972-6

  15. 15.

    Röthemeyer S, Sommer F (2006) Kautschuk Technologie. Carl Hanser Verlag, Munic

    Google Scholar 

  16. 16.

    Zhang X, Shi F, Niu J, Jiang Y, Wang Z (2008) Superhydrophobic surfaces: from structural control to functional application. J Mater Chem 18(1):621–633

    CAS  Article  Google Scholar 

  17. 17.

    Ensikat HJ, Ditsche-Kuru P, Neinhuis C, Barthlott W (2011) Superhydrophobicity in perfection: the outstanding properties of the lotus leaf. Beilstein J Nanotechnol 2(1):152–161

    CAS  Article  Google Scholar 

  18. 18.

    Koschnig L (1997) Materialcharakterisierung von Flüssigsilikonkautschuken (LSR) zur Beschreibung des Prozessverlaufs beim Spritzgießen. Institut für Kunststoffverarbeitung, RWTH Aachen, unpublished student research project, supervisor: E. Henze

  19. 19.

    Walde H (1996) Beitrag zum vollautomatischen Spritzgießen von Flüssigsilikonkautschuk. RWTH Aachen, Dissertation, ISBN: 3-86073-565-9

  20. 20.

    Henze E (2000) Verarbeitung von Flüssigsilikonkautschuk (LSR) zu technischen Formteilen. RWTH Aachen, Dissertation, ISBN: 3-89653-439-4

  21. 21.

    Kippenberger M (1998) Simulation des Werkzeugfüllvorgangs beim Spritzgießen von Flüssigsilikonkautschuk (LSR) unter Berücksichtigung der untervolumetrischen Füllung. Institut für Kunststoffverarbeitung, RWTH Aachen, unpublished student research project, supervisor: E. Henze

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Clemens Behmenburg.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hopmann, C., Behmenburg, C., Recht, U. et al. Injection Molding of Superhydrophobic Liquid Silicone Rubber Surfaces. Silicon 6, 35–43 (2014). https://doi.org/10.1007/s12633-013-9164-0

Download citation

Keywords

  • Silicone rubber
  • Surface structure
  • Structural analyses
  • Micro structures
  • Superhydrophobia