, Volume 6, Issue 1, pp 35–43 | Cite as

Injection Molding of Superhydrophobic Liquid Silicone Rubber Surfaces

  • Christian Hopmann
  • Clemens Behmenburg
  • Ulf Recht
  • Katja Zeuner
Original Paper


Superhydrophobic functional surfaces have numerous applications. Their self-cleaning ability and the associated savings in energy, water and cleaning agents enhance the sustainability of products and often make active cleaning of these surfaces unnecessary. Silicone surfaces, which aim to imitate the surface of the lotus plant, were prepared using a microstructured injection mold. The conical micro structures were varied in diameter and height ranging from 5 to 20 \(\upmu \)m as were the process parameters within the framework of a statistical experimental plan. The molded structures were evaluated by scanning electron microscopy and confocal laser microscopy, and the resulting contact angle was measured. In contrast to the structural dimensions, the process parameters had only a minor impact on the contact angle. Smaller base diameters of the individual cones and the resulting smaller distances between the cone tips produced larger contact angles. Larger aspect ratios and increasing heights at equal intervals of the individual structures led to smaller standard deviations from the mean measured contact angles. Subsequent mechanical load tests showed the resistance of the functionalization. Our results reveal that it is possible to produce robust superhydrophobic surfaces in a single-step liquid silicone injection molding process.


Silicone rubber Surface structure Structural analyses Micro structures Superhydrophobia 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Darwin C (1859) On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. John Murray, LondonGoogle Scholar
  2. 2.
    NN (2012) Biomimetics - Conception and strategy, Differences between biomimetic and conventional methods/products. VDI-Gesellschaft Technologies of Life Sciences, DüsseldorfGoogle Scholar
  3. 3.
    Nachtigall W (2010) Bionik als Wissenschaft, Erkennen—Abstrahieren—Umsetzen. Springer-Verlag, BerlinCrossRefGoogle Scholar
  4. 4.
    Bonser RHC (2006) Patented biologically-inspired technological innovations: a twenty year view. J Bionic Eng 3(1):39–41CrossRefGoogle Scholar
  5. 5.
    Schäfer S, Briegert B, Menzel S (2005) Bionik im Bauwesen. In: Rossmann T, Tropea C (eds) Bionik—Aktuelle Forschungsergebnisse in Natur, Ingenieur- und Geisteswissenschaft. Springer-Verlag, BerlinGoogle Scholar
  6. 6.
    Speck T (2011) Verpacken, Auspacken und Schützen nach dem Vorbild der Natur: Was man von der Biologie für technische Verpackungen lernen kann. VDI annual injection molding conference. Baden-BadenGoogle Scholar
  7. 7.
    Solga A, Cerman Z, Striffler BF, Spaeth M, Barthlott W (2007) The dream of staying clean: lotus and biomimetic surfaces. Bioinspiration Biomim 2(4):126–134CrossRefGoogle Scholar
  8. 8.
    Koch K, Barthlott W (2009) Superhydrophobic and superhydrophilic plant surfaces: an inspiration for biomimetic materials. Phil Trans Roy Soc 367(1893):1487–1509CrossRefGoogle Scholar
  9. 9.
    NN (2011) Biomimetics - Functional bionic surfaces. VDI-Gesellschaft Technologies of Life Sciences, DüsseldorfGoogle Scholar
  10. 10.
    Barthlott W (1990) Scanning electron microscopy of the epidermal surface in plants. In: Claugher D (ed) Scanning electron microscopy in taxonomy and functional morphology. Clarendon Press, Oxford, pp 69–94Google Scholar
  11. 11.
    Cerman Z (2007) Superhydrophobie und Selbstreinigung: Wirkungsweise, Effizienz und Grenzen bei der Abwehr von Mikroorganismen. Rheinische Friedrich-Wilhelms-Universität Bonn, DissertationGoogle Scholar
  12. 12.
    Nachtigall W, Blüchel K (2002) Das große Buch der Bionik—Neue Technologien nach dem Vorbild der Natur. Deutsche Verlags-Anstalt, MunicGoogle Scholar
  13. 13.
    Dallmann S (2011) Reinigung superhydrophober Oberflächen. Technische Universität Dortmund, DissertationGoogle Scholar
  14. 14.
    Klaiber F (2010) Entwicklung einer Anlagen- und Prozesstechnik für die Herstellung superhydrophober Oberflächen im Spritzgießverfahren. RWTH Aachen, Dissertation, ISBN: 3-86130-972-6Google Scholar
  15. 15.
    Röthemeyer S, Sommer F (2006) Kautschuk Technologie. Carl Hanser Verlag, MunicGoogle Scholar
  16. 16.
    Zhang X, Shi F, Niu J, Jiang Y, Wang Z (2008) Superhydrophobic surfaces: from structural control to functional application. J Mater Chem 18(1):621–633CrossRefGoogle Scholar
  17. 17.
    Ensikat HJ, Ditsche-Kuru P, Neinhuis C, Barthlott W (2011) Superhydrophobicity in perfection: the outstanding properties of the lotus leaf. Beilstein J Nanotechnol 2(1):152–161CrossRefGoogle Scholar
  18. 18.
    Koschnig L (1997) Materialcharakterisierung von Flüssigsilikonkautschuken (LSR) zur Beschreibung des Prozessverlaufs beim Spritzgießen. Institut für Kunststoffverarbeitung, RWTH Aachen, unpublished student research project, supervisor: E. HenzeGoogle Scholar
  19. 19.
    Walde H (1996) Beitrag zum vollautomatischen Spritzgießen von Flüssigsilikonkautschuk. RWTH Aachen, Dissertation, ISBN: 3-86073-565-9Google Scholar
  20. 20.
    Henze E (2000) Verarbeitung von Flüssigsilikonkautschuk (LSR) zu technischen Formteilen. RWTH Aachen, Dissertation, ISBN: 3-89653-439-4Google Scholar
  21. 21.
    Kippenberger M (1998) Simulation des Werkzeugfüllvorgangs beim Spritzgießen von Flüssigsilikonkautschuk (LSR) unter Berücksichtigung der untervolumetrischen Füllung. Institut für Kunststoffverarbeitung, RWTH Aachen, unpublished student research project, supervisor: E. HenzeGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Christian Hopmann
    • 1
  • Clemens Behmenburg
    • 1
  • Ulf Recht
    • 1
  • Katja Zeuner
    • 1
  1. 1.Institute of Plastics Processing at RWTH Aachen UniversityAachenGermany

Personalised recommendations