Skip to main content

Transport of Dissolved Si from Soil to River: A Conceptual Mechanistic Model

Abstract

This paper reviews the processes which determine the concentrations of dissolved silicon (DSi) in soil water and proposes a conceptual mechanistic model for understanding the transport of Si through soils to rivers. The net DSi present in natural waters originates from the dissolution of mineral and amorphous Si sources in the soil, as well as precipitation processes. Important controlling factors are soil composition (mineralogy and saturated porosity) and soil water chemistry (pH, concentrations of organic acids, CO2 and electrolytes). Together with production, polymerization and adsorption equations they constitute a mechanistic framework determining DSi concentrations. We discuss how key controls differ across soil horizons and how this can influence the DSi transport. A typical podzol soil profile in a temperate climate is used as an example, but the proposed model is transferrable to other soil types. Additionally, the impact of external forcing factors such as seasonal climatic variations and land use is evaluated. This blueprint for an integrated model is a first step to mechanistic modelling of Si transport processes in soils. Future implementation with numerical methods should validate the model with field measurements.

This is a preview of subscription content, access via your institution.

References

  1. Tréguer PJ, De La Rocha CL (2013) The world ocean silica cycle. Annu Rev Mar Sci 5:5.1–5.25

    Article  Google Scholar 

  2. Ittekot V, Humborg C, Schäfer P (2000) Hydrological alterations and marine biogeochemistry: a silicate issue? Bioscience 50:776–782

    Article  Google Scholar 

  3. Sommer M, Kaczorek D, Kuzyakov Y, Breuer J (2006) Silicon pools and fluxes in soils and landscapes-a review. J Plant Nutr Soil Sci 169:310–329

    CAS  Article  Google Scholar 

  4. Cornelis J-T, Delvaux B, Georg RB, Lucas Y, Ranger J, Opfergelt S (2011) Tracing the origin of dissolved silicon transferred from various soil-plant systems towards rivers: a review. Biogeosciences 8:89–112

    CAS  Article  Google Scholar 

  5. Sauer D, Saccone L, Conley DJ, Herrmann L, Sommer M (2006) Review of methodologies for extracting plant-available and amorphous Si from soils and aquatic sediments. Biogeochemistry 80:89–108

    CAS  Article  Google Scholar 

  6. Laruelle GG, Roubeix V, Sferratore A, Brodherr B, Ciuffa D, Conley DJ, Dürr HH, Garnier J, Lancelot C, Le Thi Phuong Q, Meunier J-D, Meybeck M, Michalopoulos P, Moriceau B, Longphuirt SN, Loucaides S, Papush L, Presti M, Ragueneau O, Regnier P, Saccone L, Slomp CP, Spiteri C, Van Cappellen P (2009) Anthropogenic perturbations of the silicon cycle at the global scale: key role of the land-ocean transition. Glob Biogeochem Cycles 23:GB4031

    Article  CAS  Google Scholar 

  7. Fraysse F, Pokrovsky OS, Schott J, Meunier JD (2006) Surface properties, solubility and dissolution kinetics of bamboo phytoliths. Geochim Cosmochim Acta 70:1939–1951

    CAS  Article  Google Scholar 

  8. Gérard F, François M, Ranger J (2002) Processes controlling silica concentration in leaching and capillary soil solutions of an acidic brown forest soil (Rhône, France). Geoderma 107:197–226

    Article  Google Scholar 

  9. Smis A, Van Damme S, Struyf E, Clymans W, Van Wesemael B, Frot E, Vandevenne F, Van Hoestenberghe T, Govers G, Meire P (2011) A trade-off between dissolved and amorphous silica transport during peak flow events (Scheldt river basin, Belgium): impacts of precipitation intensity on terrestrial Si dynamics in strongly cultivated catchments. Biogeochemistry 106:475–487

    Article  Google Scholar 

  10. ClymansW, Struyf E, Govers G, Vandevenne F, Conley DJ (2011) Anthropogenic impact on amorphous silica pools in temperate soils. Biogeosciences. http://www.biogeosciences-discuss.net/8/4391/2011/bgd-8-4391-2011.pdf

  11. Kurtz AC, Lugolobi F, Salvucci G (2011) Germanium-silicon as a flow path tracer: application to the Rio Icacos watershed. Water Resour Res 47:16

    Article  Google Scholar 

  12. McDonnell JJ (1990) Rationale for old water discharge through macropores in a steep, humid catchment. Water Resour Res 26:2821–2832

    Article  Google Scholar 

  13. Doucet F, Schneider C, Bones S, Kretchner A, Moss I, Tekely P, Exley C (2001) The formation of hydroxyaluminosilicates of geochemical and biological significance. Geochim Cosmochim Acta 65(15):2461–2467

    CAS  Article  Google Scholar 

  14. Van Cappellen P (2003) Biomineralization and global biogeochemical cycles. In: Dove P, DeYoreo J, Weiner S (eds) Biomineralizations. Reviews in mineralogy and geochemistry 54:357–381. Mineral. Soc. Amer., Washington, DC. ISBN 093995066-9

  15. McKeague JA, Cline MG (1963) Silica in soil solutions: II. The adsorption of monosilicic acid by soil and by other substances. Can J Soil Sci 43:83–96

    CAS  Article  Google Scholar 

  16. Conrad CF, Icopini GA, Yasuhara H, Bandstra JZ, Brantley SL, Heaney PJ (2007) Modeling the kinetics of silica nanocolloid formation and precipitation in geologically relevant aqueous solutions. Geochim Cosmochim Acta 71:531–542

    CAS  Article  Google Scholar 

  17. Jackson ML, Tyler SA, Willis AL, Bourbeau GA, Pennington RP (1948) Weathering sequence of clay-size minerals in soils and sediments. I. Fundamental generalizations. J Phys Colloid Chem 52:1237–1260

    CAS  Google Scholar 

  18. Bormann H, Klaassen K (2008) Seasonal and land use dependent variability of soil hydraulic and soil hydrological properties of two Northern German soils. Geoderma 145:295–302

    Article  Google Scholar 

  19. Berner RA (1992) Weathering, plants and the long-term carbon cycle. Geochim Cosmochim Acta 56:3225–3231

    CAS  Article  Google Scholar 

  20. Drever JI (1994) The effect of land plants on weathering rates of silicate minerals. Geochim Cosmochim Acta 58 (10):2325–2332

    CAS  Article  Google Scholar 

  21. Albertsen M (1977) Labor- und Felduntersuchungen zum gasaustausch zwischen Grundwasser und Atmosphäre über natürlichen und verunreinigten Grundwässern. Thesis, Univ. Kiel

  22. Street-Perrott FA, Barker PA (2008) Biogenic silica: a neglected component of the coupled global continental biogeochemical cycles of carbon and silicon. Earth Surf Process Landf 33:1436–1457

    CAS  Article  Google Scholar 

  23. Scanlon TM, Raffensperger JP, Hornberger GM (2001) Modeling transport of dissolved silica in a forested headwater catchment: implications for defining the hydrochemical response of observed flow pathways. Water Resour Res 37(4):1071–1082

    CAS  Article  Google Scholar 

  24. Iler RK (1979) The chemistry of silica: solubility, polymerization, colloid and surface chemistry, and biochemistry. John Wiley & Sons, New York, 866 p

  25. Drees LR, Wilding LP, Smeck NE, Senkayi AL (1989) In: Dixon B, Weed SB (eds) Minerals in soil environments, 2nd edn. Soil Sci Soc Am J, Madison, Wisconsin

  26. Wada K (1989) In: Dixon JB, Weed SB (eds) Minerals in soil environments. SSSA Book series No.1, Madison

  27. Matichenkov VV, Bocharnikova EA (2001) In: Datnoff LE, Snyder GH, Korndörfer GH (eds) Silicon in agriculture. Studies in Plant Science 8, Elsevier, Amsterdam

  28. Chadwick OA, Hendricks DM, Nettleton WD (1987) Silica in duric soils, 2. Mineralogy, Soil Sci Soc Am J 51(4):982–985

    CAS  Article  Google Scholar 

  29. Struyf E, Conley DJ (2008) Silica: an essential nutrient in wetland biogeochemistry. Front Ecol Environ 6. doi:10.1890/070126

  30. Aoki Y, Hoshino M, Matsubara T (2007) Silica and testate amoebae in a soil under pine-oak forest. Geoderma 142(1–2):29–35

    CAS  Article  Google Scholar 

  31. Stumm W, Wollast R (1990) Coordination chemistry of weathering: kinetics of the surface-controlled dissolutidn of oxide minerals. Rev Geophys 28:53–69

    Article  Google Scholar 

  32. Dietzel M (2002) Dissolution of silicates and the stability of polysilicic acid. Geochim Cosmochim Acta 64(19):3275–3281

    Article  Google Scholar 

  33. Appelo CAJ, Postma D (1993) Geochemistry, groundwater, and pollution. A.A. Balkema, Rotterdam

    Google Scholar 

  34. Bowser CJ, Jones BF (2002) Mineralogical controls on the composition of natural waters dominated by silicate hydrolysis. Am J Sci 302:582–662

    CAS  Article  Google Scholar 

  35. Dove PM (1995) Kinetic and thermodynamic controls on silica reactivity in weathering environments. In: Chemical weathering rates of silicate minerals. Mineralogical Society of America and the Geochemical Society. Rev Mineral Geochem 31:235–290

    CAS  Google Scholar 

  36. Dove PM, Crerar DA (1990) Kinetics of quartz dissolution in electrolyte solutions using a hydrothermal mixed flow reactor. Geochim Cosmochim Acta 54:955–969

    CAS  Article  Google Scholar 

  37. Graf T, Therrien R (2007) Coupled thermohaline groundwater flow and single-species reactive solute transport in fractured porous media. Adv Water Resour 30:742–771

    CAS  Article  Google Scholar 

  38. Dove PM (1999) The dissolution kinetics of quartz in aqueous mixed cation solutions. Geochim Cosmochim Acta 63(22):3715–3727

    CAS  Article  Google Scholar 

  39. Sverdrup HU, Warfvinge P (1988) Weathering of primary silicate minerals in the natural soil environment in relation to a chemical weathering model. Water Air Poll 38:387–408

    CAS  Google Scholar 

  40. Sverdrup HU (1990) The kinetics of base cation release due to chemical weathering. Lund Univ. Press, Sweden, 246 p. ISBN 0-86238-247-5

  41. Aagaard P, Helgeson HC (1982) Thermodynamic and kinetic constraints on reaction rates among mineral and aqueous solutions – I. Theoretical considerations. Am J Sci 282:237–285

    CAS  Article  Google Scholar 

  42. Helgeson HC, Murphy WM, Aagaard P (1984) Thermodynamic and kinetic constraints on reaction rates among minerals and aqueous solution-II. Rate constants, effective surface area and the hydrolysis of feldspar. Geochim Cosmochim Acta 48:2405–2432

    CAS  Article  Google Scholar 

  43. Chou L, Wollast R (1985) Steady-State kinetics and dissolution mechanisms of albite. Am J Sci 285:963–993

    CAS  Article  Google Scholar 

  44. Holland H, Lazar B, Mc Gaffrey M (1986) Evolution of the atmosphere and the oceans. Nature 320:27–33

    CAS  Article  Google Scholar 

  45. Berg A, Banwart SA (2000) Carbon dioxide mediated dissolution of Ca-feldspar: implications for silicate weathering. Chem Geol 163(1–4):25–42

    CAS  Article  Google Scholar 

  46. Pokrovski GS, Schott J (1998) Experimental study of the complexation of silicon and germanium with aqueous organic species: Implications for germanium and silicon transport and Ge/Si ratio in natural waters. Geochim Cosmochim Acta 62(21/22):3413–3428

    CAS  Article  Google Scholar 

  47. Oelkers EH, Schott J (1999) Experimental study of kyanite dissolution rates as a function of chemical affinity and solution composition. Geochim Cosmochim Acta 63(6):785–797

    CAS  Article  Google Scholar 

  48. Opfergelt S, Cardinal D, André L, Delvigne C, Bremond L, Delvaux B (2010) Variations of δ 30Si and Ge/Si with weathering and biogenic input in tropical basaltic ash soils under monoculture. Geochim Cosmochim Acta 74:225–240

    CAS  Article  Google Scholar 

  49. Gautier JM, Oelkers EH, Schott J (1994) Experimental study of K-feldspar dissolution rates as a function of chemical affinity at 150 °C and pH 9. Geochim Cosmochim Acta 58:4549–4560

    CAS  Article  Google Scholar 

  50. Devidal JL (1994) Solubilité et cinétique de dissolution/précipitation de la kaolinite en milieu hydrothermal. Approche expérimentale et modélisation. Ph. D. Thesis University Paul Sabatier, Toulouse, France

  51. Devidal JL, Dandurand JL, Schott J (1992) In: Kharaka YK, Maest AS (eds) Water rock interaction. A. A. Balkema, Rotterdam

  52. Devidal JL, Schott J, Dandurand JL (1997) An experimental study of kaolinite dissolution and precipitation kinetics as a function of chemical affinity and solution composition at 150 °C, 40 bars, and pH 2, 6.8, and 7.8. Geochim Cosmochim Acta 61:5165–5186

    CAS  Article  Google Scholar 

  53. Murphy WM, Pabalan RT, Prikryl JD, Goulet CJ (1996) Reaction kinetics and thermodynamics of aqueous dissolution and growth of analcime and Na-clinoptilolite at 25 °C. Am J Sci 296:128–186

    CAS  Article  Google Scholar 

  54. Andrews J, Schlesinger W (2001) Soil CO2 dynamics, acidification, and chemical weathering in a temperate forest with experimental CO2 enrichment. Glob Biogeochem Cycles 15:149–162

    CAS  Article  Google Scholar 

  55. Taylor LL, Leake JR, Quirk J, Hardy K, Banwart SA, Beerling DJ (2009) Biological weathering and the long-term carbon cycle: integrating mycorrhizal evolution and function into the current paradigm. Geobiology 7:171–191

    CAS  Article  Google Scholar 

  56. Lerman A, Wu LL, Mackenzie FT (2007) CO2 and H2SO4 consumption in weathering and material transport to the ocean, and their role in the global carbon balance. Mar Chem 106:326–350

    CAS  Article  Google Scholar 

  57. Klaminder J, Grip H, Mörth CM, Laudon H (2011) Carbon mineralization and pyrite oxidation in groundwater: importance for silicate weathering in boreal forest soils and stream base-flow chemistry. Appl Geochem 26:319–325

    CAS  Article  Google Scholar 

  58. Farmer VC, Delbos E, Miller JD (2005) The role of phytolith formation and dissolution in controlling. Geoderma 127:71–79

    CAS  Article  Google Scholar 

  59. Giesler R, Ilvesniemi H, Nyberg L, van Hees P, Starr M, Bishop K, Kareinen T, Lundstrfm US (2000) Distribution and mobilization of Al, Fe and Si in three podzolic soil profiles in relation to the humus layer. Geoderma 94:249–263

    CAS  Article  Google Scholar 

  60. Saccone L, Conley DJ, Sauer D (2006) Methodologies for amorphous silica analysis. J Geochem Explor 88:235–238

    CAS  Article  Google Scholar 

  61. Van Cappellen P, Dixit S, van Beusekom J (2002) Biogenic silica dissolution in the oceans: Reconciling experimental and field-based dissolution rates. Glob Biogeochem Cycles 16. doi:10.1029/2001GB001431

  62. Loucaides S, Behrends T, Van Cappellen P (2010) Reactivity of biogenic silica: Surface versus bulk charge density. Geochim Cosmochim Acta 74:517–530

    CAS  Article  Google Scholar 

  63. Struyf E, Conley DJ (2012) Emerging understanding of the ecosystem silica filter. Biogeochemistry 107:9–18

    CAS  Article  Google Scholar 

  64. Beckwith RS, Reeve E (1962) Studies on soluble silica in soils. I. The Sorption of silicic acid by soils and minerals. Aust J Soil Res 1(2):157–168

    Article  Google Scholar 

  65. Hiemstra T, Barnett MO, van Riemsdijk WH (2007) Interaction of silicic acid with goethite. J Colloid Interface Sci 310:8–17

    CAS  Article  Google Scholar 

  66. Hiemstra T, Van Riemsdijk WH (2002) On the relationship between surface structure and ion complexation of oxide-solution interfaces. In: Encyclopedia of surface and colloid science, 1st edn. Marcel Dekker Inc., New York. doi:WebQuery/wurpubs/122944

  67. Rietra RP, Hiemstra T, Van Riemsdijk WH (2000) Electrolyte anion affinity and its effect on oxyanion adsorption on goethite. J Colloid Interface Sci 229:199–206

    CAS  Article  Google Scholar 

  68. Rajasekaran R, Rajendiran KV, Kumar RM, Jayavel R, Dhanasekaran D, Ramasamy P (2003) Investigation of the nucleation kinetics of zinc thiourea chloride (ZTC) single crystals. Mater Chem Phys 82:273–280

    CAS  Article  Google Scholar 

  69. Izumi S, Hara S, Kumagai T, Sakai S (2005). Molecular dynamics study of homogeneous crystal nucleation in amorphous silicon. J Cryst Growth 274:47–54

    CAS  Article  Google Scholar 

  70. Madras G, McCoy BJ (2005) Nucleation, growth, and coarsening for two- and three-dimensional phase transitions. J Cryst Growth 279:466–476

    CAS  Article  Google Scholar 

  71. Icopini GA, Brantley SL, Heaney PJ (2005) Kinetics of silica oligomerization and nanocolloid formation as a function of pH and ionic strength at 25 °C. Geochim Cosmochim Acta 69(2):293–303

    CAS  Article  Google Scholar 

  72. Lucas Y (2001) The role of plants in controlling rates and products of weathering: importance of biological pumping. Annu Rev Earth Planet Sci 29:135–163

    CAS  Article  Google Scholar 

  73. Exley C (1998) Silicon in life: a bioinorganic solution to bioorganic essentiality. J Inorg Biochem 69:139–144

    CAS  Article  Google Scholar 

  74. Huang PM (1991) Ionic factors affecting the formation of short-range ordered aluminosilicates. Soil Sci Soc Am J 55:1172–1180

    CAS  Article  Google Scholar 

  75. Turpault M-P, Righi D, Utérano C (2008) Clay minerals: precise markers of the spatial and temporal variability of the biogeochemical soil environment. Geoderma 147:108–115

    CAS  Article  Google Scholar 

  76. Fulweiler RW, Nixon SW (2005) Terrestrial vegetation and the seasonal cycle of dissolved silica in a southern New England coastal river. Biogeochemistry 74:115–130

    Article  Google Scholar 

  77. Gérard F, Mayer KU, Hodson MJ, Ranger J (2008) Modelling the biogeochemical cycle of silicon in soils: application to a temperate forest ecosystem. Geochim Cosmochim Acta 72:741–758

    Article  CAS  Google Scholar 

  78. Mayer KU, Frind EO, Blowes DW (2002) Multicomponent reactive transport modeling in variably saturated porous media using a generalized formulation for kinetically controlled reactions. Water Resour Res 38:1174–1195

    Article  CAS  Google Scholar 

  79. van Hees PAW, Lundström US, Giesler R (2000) Low molecular weight organic acids and their Al-complexes in soil solution-composition, distribution and seasonal variation in three podzolized soils. Geoderma 94:173–200

    Google Scholar 

  80. White AF, Vivit DV, Schulz MS, Bullen TD, Evett RR, Aagarwal J (2012) Biogenic and pedogenic controls on Si distributions and cycling in grasslands of the Santa Cruz soil chronosequence, California. Geochim Cosmochim Acta 94:72–94

    CAS  Article  Google Scholar 

  81. Jury W, Horton R (2004) Soil physics, 6th edn. John Wiley & Sons, New York, 370 p

    Google Scholar 

  82. FAO, Food and Agriculture Organization (2001) Lecture notes ont the major soils of the world. World Soil Resour Rep http://www.fao.org/docrep/003/Y1899E/Y1899E00.HTM

  83. Bormann BT, Wang D, Bormann FH, Benoit G, April R, Snyder MC (1998) Rapid, plant-induced weathering in an aggrading experimental ecosystem. Biogeochemistry 43:129–155

    CAS  Article  Google Scholar 

  84. Moulton KL, West J, Berner RA (2000) Solute flux and mineral mass balance approaches to the quantification of plant effects on silicate weathering. Am J Sci 300:539–570

    CAS  Article  Google Scholar 

  85. Bear J (1988) Dynamics of fluids in porous media. Elsevier, New York

    Google Scholar 

  86. Freeze RA, Cherry JA (1979) Groundwater. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  87. Berner RA, Rao JL, Chang S, O’Brien R, Keller CK (1998) Seasonal variability of adsorption and exchange equilibria in soil waters. Aquat Geochem 4:273–290

    CAS  Article  Google Scholar 

  88. Savva Y, Szlavecz K, Pouyat RV, Groffman PM, Heisler G (2009) Effects of land use and vegetation cover on soil temperature in an urban ecosystem. Soil Sci Soc Am J 74:469–480

    Article  CAS  Google Scholar 

  89. Johanson E, Sandèn P, Öberg G (2003) Organic chlorine in deciduous and coniferous forest soils in Southern Sweden. Soil Sci 168(5):347–355

    Google Scholar 

  90. Struyf E, Smis A, van Damme S, Garnier J, Govers G, van Wesemael B, Conley DJ, Batelaan O, Frot E, Clymans W, Vandevenne F, Lancelot C, Goos P, Meire P (2010) Historical land use change has lowered terrestrial silica mobilization. Nat Commun 1(129). doi:10.1038/ncomms1128

  91. Engström E, Rodushkin I, Ingri J, Baxter DC, Ecke F, Österlund H, Öhlander B (2010) Temporal isotopic variations of dissolved silicon in a pristine boreal river. Chem Geol 271:142–152

    Article  CAS  Google Scholar 

  92. Neal C, Jarvie HP, Neal M, Love AJ, Hill L, Wickham H (2005) Water quality of treated sewage effluent in a rural area of the upper Thames Basin, southern England, and the impacts of such effluents on riverine phosphorus concentrations. J Hydrol 304:103–117

    CAS  Article  Google Scholar 

  93. Bartoli F (1983) The biogeochemical cycle of silicon in two temperate forest ecosystems. Environ Biogeochem Ecol Bull 35:469–476

    CAS  Google Scholar 

  94. Cornelis J-T, Ranger J, Iserentant A, Delvaux B (2010) Tree species impact the terrestrial cycle of silicon through various uptakes. Biogeochemistry 97:231–245

    CAS  Article  Google Scholar 

  95. Markewitz D, Richter D (1998) The bio in aluminium and silicon geochemistry. Biogeochemistry 42:235–252

    CAS  Article  Google Scholar 

  96. Conley DJ (2002) Terrestrial ecosystems and the global biogeochemical silica cycle. Glob Biogeochem Cycles 16(4):1121. doi:10.1029/2002GB001894

    Article  CAS  Google Scholar 

  97. Petersen L (1976) In: Hutchinson TC, Havas M (eds) Effects of acid precipitation on terrestrial ecosystems. Plenum, New York

  98. Alexandre A, Meunier J-D, Colin F, Koud J-M (1997) Plant impact on the biogeochemical cycle of silicon and related weathering processes. Geochim Cosmochim Acta 61(63):677–682

    Article  Google Scholar 

  99. Meunier J-D, Colin F, Alarcon C (1999) Biogenic silica storage in soils. Geology 27:835–838

    CAS  Article  Google Scholar 

  100. Carey JC, Fulweiler R (2012) Watershed land use alters riverine silica cycling. Biogeochemistry. doi:10.1007/s10533-012-9784-2

  101. Cornelis J-T, Delvaux B, Titeux H (2010) Contrasting silicon uptakes by coniferous trees: a hydroponic experiment on young seedlings. Plant Soil 336:99–106

    CAS  Article  Google Scholar 

  102. Cornelis J-T, Delvaux B, Cardinal D, André L, Ranger J, Opfergelt S (2010) Tracing the mechanisms controlling the release of dissolved silicon in forest soil solutions using Si isotopes and Ge/Si ratios. Geochim Cosmochim Acta 74:3913–3924

    CAS  Article  Google Scholar 

  103. Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, London

    Google Scholar 

  104. Blecker SW, McCulley RL, Chadwick OA, Kelly EF (2006) Biologic cycling of silica across a grassland bioclimosequence. Glob Biogeochem Cycles 20. doi:10.1029/2006GB002690

  105. Lucas Y, Luizao FJ, Chauvel A, Rouiller J, Nahon D (1993) The relation between biological activity of the rain forest and mineral composition of soils. Science 260:521–523

    CAS  Article  Google Scholar 

  106. Wilding LP, Drees LR (1974) Contributions of forest opal and associated crystalline phases of fine silt and clay fractions of soils. Clay Clay Miners 22:295–306

    CAS  Article  Google Scholar 

  107. Massey FP, Hartley SE (2006) Experimental demonstration of the antiherbivore effects of silica in grasses: impacts on foliage digestibility and vole growth rates. Proc R Soc B 273:2299–2304

    CAS  Article  Google Scholar 

  108. Melzer SE, Knapp AK, Kirkman KP, Smith MD, Blair JM, Kelly EF (2010) Fire and grazing impacts on silica production and storage in grass dominated ecosystems. Biogeochemistry 97:263–278

    CAS  Article  Google Scholar 

  109. Opfergelt S, Delvaux B, André L, Cardinal D (2008) Plant silicon isotopic signature might reflect soil weathering degree. Biogeochemistry 91:163–175

    Article  Google Scholar 

  110. Meunier, J-D, Guntzer F, Kirman S, Keller C (2008) Terrestrial plant-Si and environmental changes. Mineral Mag 72:263–267

    CAS  Article  Google Scholar 

  111. Vandevenne F, Struyf E, Clymans W, Meire P (2012) Agricultural silica harvest: have humans created a new and important loop in the global silica cycle? Research Communications. Front Ecol Environ 10:243–248

    Google Scholar 

  112. Tejedor M, Jiménez C, Rodríguez M, Morillas G (2004) Effect of soil use change on soil temperature regime ISCO 2004 - 13th International Soil Conservation Organisation Conference – Brisbane, July 2004 Conserving Soil and Water for Society: Sharing Solutions

  113. Likens GE, Bormann FH, Johnson NM, Fisher DW, Pierce RS (1970) Effects of forest cutting and herbicide treatment on nutrient budgets in the hubbard brook watershed-ecosystem. Ecol Monogr 40(1):23–47

    Article  Google Scholar 

  114. Rice KC, Bricker OP (1995) Seasonal cycles of dissolved constituents in streamwater in two forested catchments in the mid-Atlantic region of the eastern USA. J Hydrol 170(1–4):137–158

    CAS  Article  Google Scholar 

  115. Tallberg P, Hartikainen H, Kairesalo T (1997) Why is soluble silicon in interstitial and lake water samples immobilized by freezing? Water Res 31(1):130–134

    CAS  Article  Google Scholar 

  116. Parkhurst DL, Appelo CAJ (1999) User’s guide to PhreeqC (Version 2)—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations, U.S. Geological Survey, Water-Resources Investigations Report 99–4259, Denver, CO

  117. Landeweert R, Hoffland E, Finlay RD, Kuyper TW, van Breemen N (2001) Linking plants to rocks: ectomycorrhizal fungi mobilize nutrients from minerals. Trends Ecol Evol 16–25:248–254

    Article  Google Scholar 

  118. Kim J, Dong H, Seabaugh J, Newell JS, Eberl DD (2004) Role of microbes in the smectite-to-illite reaction. Science 303:830–832

    Google Scholar 

  119. Watteau F, Villemin G (2001) Ultrastructural study of the biogeochemical cycle of silicon in the soil and litter of a temperate forest. Eur J Soil Sci 52:385–396

    CAS  Article  Google Scholar 

  120. Reiners WA, Bouwman AF, Parsons WFJ, Keller M (1994) Tropical rain forest conversion to pasture: changes in vegetation and soil properties. Ecol Appl 4:363–377

    Article  Google Scholar 

  121. Derry LA, Kurtz AC, Ziegler K, Chadwick OA (2005) Biological control of terrestrial silica cycling and export fluxes to watersheds. Nature 728:433

    Google Scholar 

  122. Douthitt CB (1982) The geochemistry of the stable isotopes of silicon. Geochim Cosmochim Acta 46:1449–1458

    CAS  Article  Google Scholar 

  123. Opfergelt S, Cardinal D, Henriet C, Draye X, André L, Delvaux B (2006a) Silicon isotopic fractionation by banana (Musa spp.) grown in a continuous nutrient flow device. Plant Soil 285:333–345. doi:10.1007/s11104-006-9019-1

    CAS  Article  Google Scholar 

  124. Murnane RJ, Stallard RF (1990) Germanium of silicon of the rivers of the Orinoco drainage basin. Nature 344:749–752

    CAS  Article  Google Scholar 

  125. Kurtz AC, Derry LA, Chadwick OA (2002) Germanium-silicon fractionation in the weathering environment. Geochim Cosmochim Acta 66:1525–1537

    CAS  Article  Google Scholar 

  126. Scribner AM, Kurtz AC, Chadwick OA (2006) Germanium sequestration by soil: targeting the roles of secondary clays and Feoxyhydroxides. Earth Planet Sci Lett 243:760–770

    CAS  Article  Google Scholar 

  127. Blecker SW, King SL, Derry LA, Chadwick OA, Ippolito JA, Kelly EF (2007) The ratio of germanium to silicon in plant phytoliths: quantification of biological discrimination under controlled experimental conditions. Biogeochemistry 86:189–199

    CAS  Article  Google Scholar 

  128. Delvigne C, Opfergelt S, Cardinal D, Delvaux B, Andre L (2009) Distinct silicon and germanium pathways in the soil-plant system: evidence from banana and horsetail. J Geophys Res 114:G02013. doi:10.1029/2008JG000899

    Article  CAS  Google Scholar 

  129. Chadwick OA, Kelly EF, Merritts DM, Amundson RG (1994) Atmospheric carbon dioxide consumption during soil development. Biogeochemistry 24:115–127

    CAS  Article  Google Scholar 

  130. Goddéris Y, François LM, Probst A, Schott J, Moncoulon D, Labat D, Viville D (2006) Modelling weathering processes at the catchment scale: the WITCH numerical model. Geochim Cosmochim Acta 70:1128–1147

    Article  CAS  Google Scholar 

  131. Gordon LJ, Peterson GD, Bennett EM (2008) Agricultural modifications of hydrological flows create ecological surprises. Trends in Ecol Evol 23:211–219

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benedicta Ronchi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ronchi, B., Clymans, W., Barão, A.L.P. et al. Transport of Dissolved Si from Soil to River: A Conceptual Mechanistic Model. Silicon 5, 115–133 (2013). https://doi.org/10.1007/s12633-012-9138-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-012-9138-7

Keywords

  • Dissolved silicon
  • Si transport
  • Mechanistic Si model
  • Land use
  • Amorphous Si